
Mesh Variational Autoencoders with Edge Contraction Pooling

Yu-Jie Yuana,b, Yu-Kun Laic, Jie Yanga,b, Qi Duand, Hongbo Fue and Lin Gaoa,b

aBeijing Key Laboratory of Mobile Computing and Pervasive Device, Institute of Computing Technology, CAS
bUniversity of Chinese Academy of Sciences

cSchool of Computer Science and Informatics, Cardiff University, UK
dSenseTime Research

eCity University of Hong Kong

Abstract

3D shape analysis is an important research topic in com-
puter vision and graphics. While existing methods have
generalized image-based deep learning to meshes using
graph-based convolutions, the lack of an effective pooling
operation restricts the learning capability of their networks.
In this paper, we propose a novel pooling operation for
mesh datasets with the same connectivity but different ge-
ometry, by building a mesh hierarchy using mesh simplifica-
tion. For this purpose, we develop a modified mesh simpli-
fication method to avoid generating highly irregularly sized
triangles. Our pooling operation effectively encodes the
correspondence between coarser and finer meshes in the hi-
erarchy. We then present a variational auto-encoder (VAE)
structure with the edge contraction pooling and graph-
based convolutions, to explore probability latent spaces of
3D surfaces and perform 3D shape generation. Our net-
work requires far fewer parameters than the original mesh
VAE and thus can handle denser models thanks to our new
pooling operation and convolutional kernels. Our evalua-
tion also shows that our method has better generalization
ability and is more reliable in various applications, includ-
ing shape generation and shape interpolation.

1. Introduction

In recent years, 3D shape datasets have been increas-
ingly available on the Internet. Consequently, data-driven
3D shape analysis has been an active research topic in com-
puter vision and graphics. Apart from traditional data-
driven works such as [7], recent works attempted to gener-
alize deep neural networks from images to 3D shapes such
as [30, 31, 18] for triangular meshes, [24] for point clouds,
[35, 21] for voxel data, etc. In this paper, we concentrate on
deep neural networks for triangular meshes. Unlike images,

3D meshes have complex and irregular connectivity. Most
existing works tend to keep mesh connectivity unchanged
from layer to layer, thus losing the capability of increased
receptive fields when pooling operations are applied.

As a generative network, the Variational Auto-Encoder
(VAE) [16] has been widely used in various kinds of gen-
eration tasks, including generation, interpolation and explo-
ration on triangular meshes [31]. The original MeshVAE
[31] uses a fully connected network that requires a huge
number of parameters and its generalization ability is often
weak. Although the fully connected layers allow changes of
mesh connectivity between layers, due to irregular changes,
such approaches cannot be directly generalized to convolu-
tional layers. Some works [18, 9] adopt convolutional lay-
ers in the VAE structure. However, such convolution op-
erations cannot change the connectivity of the mesh. The
work [26] introduces sampling operations in convolutional
neural networks on meshes, but their sampling strategy does
not aggregate all the local neighborhood information when
reducing the number of vertices. Therefore, in order to deal
with denser models and enhance the generalization ability
of the network, it is necessary to design a pooling operation
for meshes similar to the pooling for images to reduce the
number of network parameters. Moreover, it is desired that
the defined pooling operation can support further convolu-
tions and allow recovery of the original resolution through
a relevant de-pooling operation.

In this paper we propose a VAE architecture with newly
defined pooling operations. Our method uses mesh simpli-
fication to form a mesh hierarchy with different levels of
details, and achieves effective pooling by keeping track of
the mapping between coarser and finer meshes. To avoid
generating highly irregular triangles during mesh simpli-
fication, we introduce a modified mesh simplification ap-
proach based on [11]. The input to our network is a vertex-
based deformation feature representation [8], which unlike
3D coordinates, encodes deformations using deformation

1

gradients defined on vertices. Our framework uses a col-
lection of 3D shapes with the same connectivity to train the
network. Such meshes can be easily obtained through con-
sistent remeshing. Also, we adopt graph convolutions [6]
in our network. In all, our network follows a VAE architec-
ture where pooling operations and graph convolutions are
applied. As we will show later, our network not only has
better generalization capabilities but also can handle much
higher resolution meshes, benefiting various applications,
such as shape generation and interpolation.

2. Related Work
Deep Learning for 3D Shapes. Deep learning on 3D
shapes has received increasing attention. Boscaini et al. [2,
3] generalize CNNs from the Euclidean domain to the non-
Euclidean domain, which is useful for 3D shape analysis
such as establishing correspondences. Bronstein et al. [5]
give an overview of utilizing CNNs on non-Euclidean do-
mains, including graphs and meshes. Masci et al. [20] pro-
pose the first mesh convolutional operations by applying
filters to local patches represented in geodesic polar coor-
dinates. Maron et al. [19] parameterize a surface to a planar
flat-torus to define a natural convolution operator for CNNs
on surfaces. Wang et al. [33, 34] propose octree-based con-
volutions for 3D shape analysis. Unlike local patches, pla-
nar flat-tori, or octrees, our work performs convolutional
operations using vertex features [8] as input.

To analyze meshes with the same connectivity but differ-
ent geometry, the work [31] first introduced the VAE archi-
tecture to 3D mesh data, and demonstrates its usefulness us-
ing various applications. Tan et al. [30] use a convolutional
auto-encoder to extract localized deformation components
from mesh datasets with large-scale deformations. Gao et
al. [9] propose a network that combines convolutional mesh
VAEs with CycleGAN [37] for automatic unpaired shape
deformation transfer. Their follow-up work [10] further
proposes a two-level VAE for generating 3D shapes of man-
made objects with fine geometry details and complex struc-
tures. The works [30, 9] apply convolutional operations to
meshes in the spatial domain, while the works of [6, 13] ex-
tend CNNs to irregular graphs by construction in the spec-
tral domain, and show superior performance when com-
pared with spatial convolutions. Following [6, 36], our
work also performs convolutional operations in the spectral
domain.

While pooling operations have been widely used in deep
networks for image processing, existing mesh-based VAE
methods either do not support pooling [31, 9], or use a sim-
ple sampling process [26], which is not able to aggregate all
the local neighborhood information. In fact, the sampling
approach in [26], although also based on a simplification
algorithm, directly drops vertices, and uses the barycentric
coordinates in triangles of the coarse mesh to recover the

lost vertices by interpolation. In contrast, our pooling op-
erations can aggregate local information by recording the
simplification procedure, and support direct reversal of the
pooling operation to effectively achieve de-pooling. More
recently, Hanocka et al. [12] proposed MeshCNN, contain-
ing a dynamic mesh pooling operation, which conducts
mesh simplification according to specific tasks. On the con-
trary, we define our pooling operation based on a static mesh
simplification algorithm, aiming for generating high quality
mesh models. The static algorithm ensures consistent hier-
archies, so better preserves geometric details and is more
robust.
Uniform Sampling or Pooling Methods. Taking point
clouds as input, PointNet++ [25] proposes a uniform sam-
pling method for point cloud based neural networks. Us-
ing the same idea, TextureNet [14] also conducts uniform
sampling on the vertices of a mesh. This kind of sampling
method destroys the connection between vertices, turning
mesh data into a point cloud, which cannot support further
graph convolutions. In contrast, simplification methods can
build mesh hierarchies, so can help us perform mesh pool-
ing operations. However, most simplification methods, such
as [11], are shape-preserving, but vertices on the simplified
meshes can be highly non-uniform. Remeshing operations
such as [4], on the other hand, can build uniform simpli-
fied meshes, but lose the correspondence between meshes
in the hierarchy. We propose a modified mesh simplifica-
tion method based on the classic method [11] to simplify
meshes more uniformly and record the correspondences be-
tween the coarse and dense meshes for newly defined mesh
pooling and de-pooling operations.

3. Our Framework
In this section we introduce the basic operations and net-

work architecture used in our framework.

3.1. Mesh Simplification

We use mesh simplification to help build reliable pool-
ing operations. For this purpose, mesh simplification not
only creates a mesh hierarchy with different levels of de-
tails, but also ensures the correspondences between coarser
and finer meshes. Our simplification process is based on
the classical method [11], which performs repeated edge
contraction in an order based on a metric measuring shape
changes. However, the original approach cannot guarantee
that the simplified mesh contains evenly distributed trian-
gles. To achieve more effective pooling, each vertex in the
coarser mesh should correspond to a similarly sized region.

Our observation is that the edge length is an important
indicator for this process. To avoid contracting long edges,
we incorporate the edge length as one of the criteria to order
pairs of points to be simplified. The original work defines
the error at vertex v = [vx, vy, vz, 1]T to be a quadratic

ε ∈Ν (0,Ι)

Dense Coarse

DenseCoarse

Feature
Graph Convolution
Batch Normalization
Tanh
(De-)Pooling

Reshape

Fully Connected

Pooling

De-pooling

Figure 1. Our network architecture. ε is a random variable with a Gaussian distribution with 0 mean and unit variance.

12500 vertices 6251 vertices 6250 vertices

(a) Original Mesh (c) Our Method(b) Garland and Heckbert 1997

Figure 2. Comparison of the mesh simplification algorithm [11]
and our modified version. (a) the original mesh with 12,500 ver-
tices, (b) a result of [11] with 6,251 vertices, and (c) our result with
6,250 vertices.

form vTQv, where Q is the sum of the fundamental error
quadrics introduced in [11]. For a given edge contraction
(v1,v2) → v̄, they simply choose to use Q̄ = Q1 + Q2

to be the new matrix which approximates the error at v̄.
So the error at v̄ will be v̄TQ̄v̄. We propose to add the
new edge length to the original simplification error metric.
Specifically, given an edge (vi,vj) to be contracted to a
new vertex v̄k, the total error is defined as:
E = v̄T

k Q̄kv̄k

+ γmax{Lkm, Lkn|m ∈ Ni, n ∈ Nj ,m 6= j, n 6= i},
(1)

where Lkm (resp. Lkn) is the new edge length between ver-
tex k and vertex m (resp. vertex n). Ni (resp. Nj) is the set
of neighboring vertices of vertex i (resp. vertex j), and λ
is a weight. Note that we only penalize the maximum edge
length around newly created vertices v̄k to effectively avoid
triangles with too long edges. In our experiments, we con-
tract half of the vertices between adjacent levels of details
to support effective pooling. A representative simplification
example is shown in Fig. 2, which clearly shows the effect
of our modified simplification algorithm. The advantage of
our modified simplification algorithm over the original one
on pooling and thus shape reconstruction will be discussed
in Section 4.1.

3.2. Pooling and De-pooling

Mesh simplification is achieved by repeated edge con-
traction, i.e., contracting two adjacent vertices to a new ver-
tex. We exploit this process to define our pooling operation,
in a way similar to image-based pooling. We use average

Simplify

Figure 3. We use a simplification algorithm to introduce our pool-
ing operation on meshes. The red vertices are simplified to the
green vertex by edge contraction and the features of the red ver-
tices are averaged to give the feature of the green vertex.

pooling for our framework (and alternative pooling opera-
tions can be similarly defined). As illustrated in Fig. 3, fol-
lowing an edge contraction step, we define the feature of a
new vertex as the average feature of the contracted vertices.
This ensures that the pooling operation effectively operates
at relevant simplified regions. This process has some ad-
vantages: It preserves a correct topology to support multi-
ple levels of convolutions/pooling, and makes the receptive
field well defined.

Since our network has a decoder structure, we also need
to properly define a de-pooling operation. We similarly
take advantage of simplification relationships, and define
de-pooling as the inverse operation: the features of the ver-
tices on the simplified mesh are equally assigned to the cor-
responding contracted vertices on the dense mesh.

3.3. Graph Convolution

To form a complete neural network architecture, we
adopt the spectral graph convolutions introduced in [6]. Let
x be the input and y be the output of a convolution opera-
tion. x and y are matrices where each row corresponds to a
vertex and each column corresponds to a feature dimension.
Let L denote the normalized graph Laplacian. The spectral
graph convolution used in our network is then defined as

y = gθ(L)x =
H−1∑
h=0

θhTh(L̃)x, (2)

where L̃ = 2L/λmax − I, λmax is the largest eigenvalue,
θ ∈ RH is polynomial coefficients, and Th(L̃) ∈ RV×V is
the Chebyshev polynomial of order h evaluated at L̃.

3.4. Network Structure

As illustrated in Fig. 1, our network is built on our
average pooling operation and convolutional operation,

with a variational auto-encoder structure. The input to
the encoder is the preprocessed ACAP (As-Consistent-As-
Possible) features [8] with each dimension linearly scaled
to [−0.95, 0.95] to allow using tanh as activation function,
which are shaped as X ∈ RV×9, where V is the number
of vertices and 9 is the dimension of the deformation repre-
sentation. The representation effectively encodes local de-
formations and copes well with large rotations.

Unlike the original mesh VAE [31], which uses fully
connected layers, the encoder of our network consists of
two graph convolutional layers and one pooling layer fol-
lowed by another graph convolutional layer. The output of
the last convolutional layer is mapped to a mean vector and
a deviation vector by two different fully-connected layers.
The mean vector does not have an activation function, and
the deviation vector uses sigmoid as the activation function.

The decoder mirrors the encoder steps. However, we use
different convolutional weights from the corresponding lay-
ers in the encoder, with all layers using the tanh output ac-
tivation function. Corresponding to the pooling operation,
the de-pooling operation as described in Section 3.2 maps
features in a coarser mesh to a finer mesh. The output of
the whole network is X̂ ∈ RV×9, which has the identi-
cal dimension as the input, and can be rescaled back to the
deformation representation and used for reconstructing the
deformed shape.

In order to train our VAE network, we use the mean
squared error (MSE) as the reconstruction loss. Combined
with the KL-divergence [17], the total loss function for the
model is defined as

L =
1

2M

M∑
i=1

‖Xi − X̂i‖2F + αDKL(q(z|X)‖p(z)), (3)

where Xi and X̂i represent the preprocessed features of
the ith model and the output of the network. ‖ · ‖F is the
Frobenius norm of matrix, M is the number of shapes in
the dataset, α is a parameter to adjust the priority between
the reconstruction loss and KL-divergence. z is the latent
vector, p(z) is the prior probability, q(z|X) is the posterior
probability, and DKL is the KL-divergence.

3.5. Conditional VAE

When the VAE is used for shape generation, it is often
preferred to allow the selection of shape types to be gen-
erated, especially for datasets containing shapes from dif-
ferent categories (such as men and women, thin and fat,
see [23] for more examples). To achieve this, we refer
to [28] and add labels to the input and the latent vectors
to extend our framework. In this case, our loss function is
changed to

Lc =
1

2M

M∑
i=1

‖Xi
c − X̂i‖2F + αDKL(q(z|X, c)‖p(z|c)),

where X̂ is the output of the conditional VAE, and p(z|c)
and q(z|X, c) are conditional prior and posterior probabili-
ties, respectively.

3.6. Implementation Details

In our experiments, we contract half of the vertices with
γ = 0.001 in Eq. 1 and set the hyper-parameter H = 3 in
graph convolutions, α = 0.3 in the total loss function. The
latent space dimension is 128 for all our experiments. We
also use L2 regularization on the network weights to avoid
over-fitting. We use Adam optimizer [15] with the learning
rate set to 0.001.

4. Experiments
4.1. Framework Evaluation

To compare different network structures and settings, we
use several shape deformation datasets, including SCAPE
dataset [1], Swing dataset [32], Face dataset [22], Horse and
Camel dataset [29], Fat (ID:50002) from the MPI DYNA
dataset [23], and Hand dataset. For each dataset, it is ran-
domly split into halves for training and testing. We test the
capability of the network to generate unseen shapes, and
report the average RMS (root mean squared) errors.
Effect of Pooling. In Table 1 (Columns 3 and 8) we com-
pare the RMS errors of reconstructing unseen shapes with
and without pooling. The RMS error is lower by an average
of 6.92% with pooling. The results show the benefit of our
pooling and de-pooling operations.
Ablation Study. We compare spectral graph convolutions
with alternative spatial convolutions, both with the network
as shown in Fig. 1. The comparison results are shown in Ta-
ble 1 (Columns 2 and 3). One can easily find that spectral
graph convolutions give better results. Moreover, to demon-
strate the benefit of our simplification-based pooling oper-
ation, we compare our pooling with the original simplifi-
cation algorithm [11] for pooling, a representative uniform
remeshing method [4] for pooling, the existing graph pool-
ing method [27], and the mesh sampling operation [26]. Our
method aims for a uniform, but also shape-preserving sim-
plification, which leads to better generalization ability. The
results are shown in Table 1.
Comparison with State-of-the-Art. In Table 2, we com-
pare our method with the state-of-the-art mesh-based auto-
encoder architectures [9, 26, 31] in terms of RMS errors
of reconstructing unseen shapes. We also compare with
MeshCNN [12] in Table 3. We modify the segmenta-
tion network of MeshCNN for the encoding-decoding task.
Thanks to spectral graph convolutions and our pooling, our
method consistently reduces the reconstruction errors of un-
seen data, showing superior generalizability. We further
show qualitative reconstruction comparison with [9] and
[26] in Fig. 4. It shows that our method leads to more ac-

Dataset Only Only Pooling Uniform Graph Mesh Our
Spatial Conv. Spectral Conv. with [11] Remeshing Pooling Sampling Method

SCAPE 0.1086 0.0825 0.0898 0.0813 0.0824 0.0831 0.0763
Swing 0.0359 0.0282 0.0284 0.0281 0.0292 0.0298 0.0268

Fat 0.0362 0.0267 0.0285 0.0305 0.0253 0.0289 0.0249
Hand 0.0300 0.0284 0.0271 0.0280 0.0306 0.0278 0.0260

Table 1. Comparison of RMS (root mean square) reconstruction errors for unseen data using our network with pooling (‘Our Method’),
without pooling (‘Only Spectral Conv.’), without pooling and with an alternative spatial convolution operator (‘Only Spatial Conv.’), with
original simplification [11]-based pooling, with uniform remeshing [4], with graph pooling [27] and with mesh sampling [26].

Dataset #. Vertices Tan Gao Ranjan Ours2018 2018 2018
SCAPE 12500 - 0.1086 0.1095 0.0763
Swing 9971 - 0.0359 0.0557 0.0268

Fat 6890 0.0308 0.0362 0.0324 0.0249
Hand 3573 0.0362 0.0300 0.0632 0.0260
Face 11849 - 1.0619 1.1479 0.7257

Horse 8431 - 0.0128 0.0510 0.0119
Camel 11063 - 0.0134 0.0265 0.0115

Table 2. Comparison of RMS reconstruction errors for unseen data
using different auto-encoder frameworks proposed by Tan et al.
[31], Gao et al. [9], and Ranjan et al. [26]. ‘-’ means the corre-
sponding method runs out of memory (largely due to the use of
fully connected networks).

Dataset SCAPE Swing
Method MeshCNN Ours MeshCNN Ours

dihedral angle 0.0690 0.0006 0.0506 0.0003
inner angle 1 0.3245 0.0614 0.3713 0.0421
inner angle 2 0.3100 0.0529 0.2964 0.0402

edge-length ratio 1 0.3806 0.0661 0.3645 0.0537
edge-length ratio 2 0.3668 0.0649 0.3523 0.0475

Table 3. Comparison of MAE (mean absolute error) reconstruction
errors with MeshCNN [12]. We use MAE of the five edge features,
which are the inputs of MeshCNN, as the metric.

Ground
Truth

Ranjan et
al. 2018

Our

Ground
Truth

Gao et al.
2018

Our

>0.2

0

Figure 4. Qualitative comparison of reconstruction results for un-
seen data with [9] (left) and [26] (right). Reconstruction errors are
color-coded on the left and the results on the right also show close-
up views for more details. It can be seen that our method leads to
more accurate reconstructions and the method of [26] suffers from
easily noticeable artifacts.

curate reconstruction results than [9, 26]. We also perform
a comparison experiment to illustrate that our network re-
quires far fewer parameters than the original MeshVAE. For
Fat dataset with 6890 vertices for each shape, the original

MeshVAE needs 129, 745, 920 parameters, while ours only
needs 7, 941, 042.

4.2. Generation of Novel Models

Once our network is trained, we can use the latent space
and decoder to generate new shapes. We use the stan-
dard normal distribution z ∼ N(0, I) as the input to the
trained decoder. It can be seen from Fig. 5 that our net-
work is capable of generating reasonable new shapes. To
prove that the generated shapes do not exist in the model
dataset, we find the nearest shapes based on the average
per-vertex Euclidean distance in the original datasets for vi-
sual comparison. It can be seen that the generated shapes
are indeed new and different from any existing shape in the
datasets. To show our conditional random generation abil-
ity, we train the network on the DYNA dataset from [23].
We use BMI+gender and motion as the condition to train
the network. As shown in Fig. 6, our method is able to
randomly generate models that are conditioned on the body
shape ‘50007’ – a male model with BMI 39.0 and condi-
tioned on the action with the label ‘One Leg Jump’ includ-
ing lifting a leg.

4.3. Mesh Interpolation

Our method can also be used for shape interpolation.
This is also a way to generate new shapes. We linearly in-
terpolate between two latent vectors of two shapes and the
probabilistic decoder outputs a 3D deformation sequence.
We compare our method on the SCAPE dataset [1] with
a state-of-the-art data-driven deformation method [7], as
shown in Fig. 7. We can see that the results by the data-
driven method of [7] tend to follow the movement se-
quences from the original dataset which has similar start and
end states, leading to redundant motions such as the swing
of right arm. In contrast, our interpolation results give more
reasonable motion sequences. We show more interpolation
results in Fig. 9, including sequences between newly gener-
ated models and models beyond human bodies.

We compare our network with MeshVAE [31] to show
the ability of our network for processing denser meshes. A
comparison example for interpolation is shown in Fig. 8.

Horse

Scape

Face Swing

Hand

Our

Results

Our

Results

NN

NN

Figure 5. Randomly generated new shapes using our framework, along with their nearest neighbors (NN) in the original datasets.

Conditioned on BodyShape - Male Model with BMI 39.0

Conditioned on Motion Sequence - One Leg Jump

Figure 6. Conditional random generation of new shapes using our
framework.

Gao et al.

2016

Our

Figure 7. Comparison of mesh interpolation results with [7] (1st
row). The models in the leftmost and rightmost columns are the
input models to be interpolated.

5. Conclusions
In this paper we introduced a newly defined pooling op-

eration based on a modified mesh simplification algorithm
and integrated it into a mesh variational auto-encoder ar-
chitecture, which uses per-vertex feature representations as
inputs, and utilizes graph convolutions. Through extensive

Tan et al.
2018

Our

Figure 8. Interpolation comparison between Mesh VAE [31] and
our method. The original elephant model [29] has 42,321 vertices,
which cannot be handled by Mesh VAE due to memory restriction
and therefore a simplified mesh with 5,394 vertices is used instead.
Our method operates on the original mesh model and produces
results with more details.

a)

c)

b)

Figure 9. More interpolation results. (a)(b) more diverse shapes
other than human bodies. (c) results interpolated between newly
generated shapes.

experiments we demonstrated that our generative model has
better generalization ability. Compared to the original Mesh
VAE, our method can generate high quality deformable
models with richer details. Our experiments also show that
our method outperforms the state-of-the-art methods in var-
ious applications including shape generation and shape in-
terpolation. One of the limitations of our method is that it
can process only homogeneous meshes. As future work,
it is desirable to develop a framework capable of handling
shapes with different topology as input.

References
[1] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Se-

bastian Thrun, Jim Rodgers, and James Davis. Scape: shape
completion and animation of people. ACM transactions on
graphics, 24(3):408–416, 2005. 4, 5

[2] Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and
Michael Bronstein. Learning shape correspondence with
anisotropic convolutional neural networks. In NIPS, pages
3189–3197, 2016. 2

[3] Davide Boscaini, Jonathan Masci, Emanuele Rodolà,
Michael M Bronstein, and Daniel Cremers. Anisotropic dif-
fusion descriptors. Computer Graphics Forum, 35(2):431–
441, 2016. 2

[4] Mario Botsch and Leif Kobbelt. A remeshing approach to
multiresolution modeling. In SGP, pages 185–192, 2004. 2,
4, 5

[5] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur
Szlam, and Pierre Vandergheynst. Geometric deep learning:
going beyond euclidean data. IEEE Signal Processing Mag-
azine, 34(4):18–42, 2017. 2

[6] Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional neural networks on graphs with
fast localized spectral filtering. In Advances in NIPS, pages
3844–3852, 2016. 2, 3

[7] Lin Gao, Shu-Yu Chen, Yu-Kun Lai, and Shihong Xia. Data-
driven shape interpolation and morphing editing. Computer
Graphics Forum, 36(8):19–31, 2017. 1, 5, 6

[8] Lin Gao, Yu-Kun Lai, Jie Yang, Ling-Xiao Zhang, Leif
Kobbelt, and Shihong Xia. Sparse data driven mesh defor-
mation. arXiv preprint arXiv:1709.01250, 2017. 1, 2, 4

[9] Lin Gao, Jie Yang, Yi-Ling Qiao, Yukun Lai, Paul Rosin,
Weiwei Xu, and Shihong Xia. Automatic unpaired shape de-
formation transfer. ACM Transactions on Graphics, 37(6):1–
15, 2018. 1, 2, 4, 5

[10] Lin Gao, Jie Yang, Tong Wu, Yu-Jie Yuan, Hongbo Fu, Yu-
Kun Lai, and Hao Zhang. Sdm-net: Deep generative network
for structured deformable mesh. ACM Trans. Graph., 38(6),
Nov. 2019. 2

[11] Michael Garland and Paul S Heckbert. Surface simplification
using quadric error metrics. In Siggraph, pages 209–216,
1997. 1, 2, 3, 4, 5

[12] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar
Fleishman, and Daniel Cohen-Or. Meshcnn: A network with
an edge. ACM Transactions on Graphics (TOG), 38(4):90:1–
90:12, 2019. 2, 4, 5

[13] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convo-
lutional networks on graph-structured data. arXiv preprint
arXiv:1506.05163, 2015. 2

[14] Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkhouser,
Matthias Niessner, and Leonidas J. Guibas. Texturenet:
Consistent local parametrizations for learning from high-
resolution signals on meshes. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June
2019. 2

[15] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 4

[16] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013. 1

[17] Solomon Kullback and Richard A Leibler. On informa-
tion and sufficiency. The annals of mathematical statistics,
22(1):79–86, 1951. 4

[18] Or Litany, Alex Bronstein, Michael Bronstein, and Ameesh
Makadia. Deformable shape completion with graph convolu-
tional autoencoders. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018. 1

[19] Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope,
Nadav Dym, Ersin Yumer, Vladimir G Kim, and Yaron Lip-
man. Convolutional neural networks on surfaces via seam-
less toric covers. ACM Transactions on Graphics, 36(4):71,
2017. 2

[20] Jonathan Masci, Davide Boscaini, Michael Bronstein, and
Pierre Vandergheynst. Geodesic convolutional neural net-
works on riemannian manifolds. In ICCV workshops, pages
37–45, 2015. 2

[21] D. Maturana and S. Scherer. VoxNet: A 3D Convolutional
Neural Network for Real-Time Object Recognition. In IROS,
2015. 1

[22] Thomas Neumann, Kiran Varanasi, Stephan Wenger, Markus
Wacker, Marcus Magnor, and Christian Theobalt. Sparse
localized deformation components. ACM Transactions on
Graphics (TOG), 32(6):179, 2013. 4

[23] Gerard Pons-Moll, Javier Romero, Naureen Mahmood, and
Michael J Black. Dyna: A model of dynamic human shape
in motion. ACM Transactions on Graphics, 34(4):120, 2015.
4, 5

[24] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. arXiv preprint arXiv:1612.00593, 2016.
1

[25] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in Neural Infor-
mation Processing Systems, pages 5099–5108. Curran Asso-
ciates, Inc., 2017. 2

[26] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and
Michael J. Black. Generating 3D faces using convolutional
mesh autoencoders. In European Conference on Computer
Vision (ECCV), pages 725–741. Springer International Pub-
lishing, 2018. 1, 2, 4, 5

[27] Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. Min-
ing point cloud local structures by kernel correlation and
graph pooling. In CVPR, volume 4, 2018. 4, 5

[28] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning
structured output representation using deep conditional gen-
erative models. In Advances in NIPS, pages 3483–3491,
2015. 4

[29] Robert W Sumner and Jovan Popović. Deformation trans-
fer for triangle meshes. ACM Transactions on Graphics,
23(3):399–405, 2004. 4, 6

[30] Qingyang Tan, Lin Gao, Yu-Kun Lai, Jie Yang, and Shihong
Xia. Mesh-based autoencoders for localized deformation
component analysis. In AAAI, 2018. 1, 2

[31] Qingyang Tan, Lin Gao, Yu-Kun Lai, and Shihong Xia. Vari-
ational autoencoders for deforming 3d mesh models. In
CVPR, June 2018. 1, 2, 4, 5, 6

[32] Daniel Vlasic, Ilya Baran, Wojciech Matusik, and Jovan
Popović. Articulated mesh animation from multi-view sil-
houettes. ACM Transactions on Graphics, 27(3):97, 2008.
4

[33] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,
and Xin Tong. O-CNN: Octree-based Convolutional Neu-
ral Networks for 3D Shape Analysis. ACM Transactions on
Graphics (SIGGRAPH), 36(4), 2017. 2

[34] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,
and Xin Tong. Adaptive O-CNN: A Patch-based Deep Rep-
resentation of 3D Shapes. ACM Transactions on Graphics
(SIGGRAPH Asia), 37(6), 2018. 2

[35] Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T Free-
man, and Joshua B Tenenbaum. Learning a Probabilistic La-
tent Space of Object Shapes via 3D Generative-Adversarial
Modeling. In Advances In Neural Information Processing
Systems, pages 82–90, 2016. 1

[36] Li Yi, Hao Su, Xingwen Guo, and Leonidas J Guibas. Sync-
speccnn: Synchronized spectral cnn for 3d shape segmenta-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2282–2290, 2017. 2

[37] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In ICCV, 2017. 2

