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Abstract—With broader availability of large-scale 3D model repositories, the need for efficient and effective exploration becomes more

and more urgent. Existing model retrieval techniques do not scale well with the size of the database since often a large number of very

similar objects are returned for a query, and the possibilities to refine the search are quite limited. We propose an interactive approach

where the user feeds an active learning procedure by labeling either entire models or parts of them as “like” or “dislike” such that the

system can automatically update an active set of recommended models. To provide an intuitive user interface, candidate models are

presented based on their estimated relevance for the current query. From the methodological point of view, our main contribution is to

exploit not only the similarity between a query and the database models but also the similarities among the database models

themselves. We achieve this by an offline pre-processing stage, where global and local shape descriptors are computed for each

model and a sparse distance metric is derived that can be evaluated efficiently even for very large databases. We demonstrate the

effectiveness of our method by interactively exploring a repository containing over 100 K models.

Index Terms—Semi-supervised, active learning, data-driven, exploration

Ç

1 INTRODUCTION

WITH the rapid development of 3D acquisition and
modeling techniques, geometric models have prolif-

erated in recent years. Large model repositories exist such
as Trimble/Google 3D warehouse [1], TurboSquid [2] etc.
which contain hundreds of thousands or even millions of
models. It is challenging to obtain an overview of these
large repositories containing models of various categories
and to find the best matching models for a given response.
Previous efforts mainly took two directions: shape retrieval
and data-driven exploration. Shape retrieval is essential to
find the most similar models in a database, but does not
support interactive exploration with the goal to get an over-
all idea of all relevant models in the repository. The effort
the end user needs to invest in order to find a model of
interest increases substantially when the repository scales
up, as potentially a large number of very similar models
exist. The data-driven approach, on the other hand, allows
the user to explore the models by exploiting the relationship
between models and thus gives a better overall feedback of
relevant models. However, state-of-the-art methods focus
on small datasets (typically tens to hundreds) all coming
from the same category.

In this paper, we propose a novel approach that integra-
tes these two directions to enable the interactive exploration
of large multi category model repositories using an intui-
tive, data-driven approach. We argue that exploration is a
more effective way of accessing and assessing huge
amounts of information in the model repository than tradi-
tional model retrieval. By analyzing the relationship
between database models in the offline stage, we make the
online stage efficient for interactive exploration, even with a
very large database. To the best of our knowledge, this is
the first work that provides a data-driven exploration of a
very large database. More specifically, the contributions of
our paper are as follows:

� We propose a scalable approach to explore large
model repositories dynamically, which involves
manageable offline precomputation and interactive
exploration in the online stage by maintaining a
dynamic set of active candidates.

� We apply an active learning approach that allows
users to flexibly explore models of interest by labeling
entire models or parts of them as “like” or “dislike”.

� We exploit the relationship between models in
the repository and present them to the user in
a relevance driven parametric space for intuitive
exploration.

Fig. 1 gives an example of interactively exploring differ-
ent chair models in our repository with over 100K models.
The user starts by providing some initial query, in this case
drawing a sketch (a) to roughly express what models she is
looking for. Alternative initial queries such as an example
model can also be used. As no keywords are assumed in the
large repository, sketch based retrieval might also return
irrelevant models (b). Models are organized in a 2D
parametric space where similar models tend to be placed
closer to each other. Instead of showing all the retrieved
models, representative models are shown with important
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models rendered larger. Users are then allowed to choose
models they like (in green) or dislike (in red) (c), and the
retrieved models are dynamically updated to reflect these
preferences (d). The user is also allowed to choose certain
regions of interest from a model (selected model in (f) with
highlighted region in (e)). The exploration result is updated
in (g) with models containing a similar chair handle empha-
sized. The local geometric information is leveraged to align
the models such that the region correspondence can be
derived easily. Our system also allows the user to zoom in
within a certain region to discover more models (h), which
were initially hidden due to the limited screen space. Details
of the algorithm pipeline and the experimental setup are
discussed in the following sections. The accompanying
video shows interactive exploration using our system.

2 RELATED WORK

To handle repositories with large numbers of models, shape
retrieval has been extensively studied in recent years. Please
refer to [3] for a comprehensive survey. For retrieval sys-
tems various global features have been proposed to com-
pactly represent 3D models, such as shape distribution [4],
spherical harmonic descriptors (SHD) of the Gaussian
Euclidean distance transform (GEDT) function [5], light
field descriptors (LFD) [6] etc. Such systems often use a
combination of text, 2D sketches [7], [8] and 3D models as
input to retrieve models with similar features.

Most shape descriptors are invariant to rigid transforma-
tions and thus are suitable for retrieving whole models.
More refined shape descriptors are required to retrieve
objects with partial similarity using boundary rasterization
[9], compact local features and voting [10] and bag-of-fea-
tures [11]. Bronstein et al. [12] propose an approach that uses
intrinsic multiscale diffusion heat kernels [13] as local fea-
tures to allow for retrieval of shapes with isometric deforma-
tion. For man-made objects, an approach is proposed based
on a small set of predefined primitives and a probability
model representing the spatial relationship [14]. Shape
retrieval has also been demonstrated as a useful tool for
modeling. Funkhouser et al. [9] propose a system for interac-
tive shape modeling using geometric details from models in
a database. To reduce the effort of user interaction, Xie et al.

[15] interactively retrieve shape parts using sketches and
assemble them for modeling. Xu et al. [16] on the other hand
take a complete sketch describing a scene of objects as input
and automatically construct the scene of 3D models, by
exploiting the relationships betweenmodels.

While substantial effort has been made in shape retrieval,
effectively finding relevant models from a large model
repository is still challenging. The most liked models may
not be returned as most relevant, merely based on user input
and geometric signatures. Alternatively, the user may not
have a clear idea at the beginning of the search process, and
the current model search engine typically returns a list of
models without organizing the content in ameaningful man-
ner. It can thus be a frustrating process to browse through a
long list of models to get the idea of relevant models and find
the ones of interest. To address these issues, our approach
provides flexible tools for users to express their preferences
and not only retrieves relevant models, but also organizes
them in a way that better captures the range of models in the
repository and their relationships.

Semi-supervised learning for retrieval. To further improve
the results of retrieval, user guidance has been used. Zhu
et al. [17] propose a simple and efficient approach for active
learning based on probability distributions on graphs.
Semi-supervised techniques have been used in image
retrieval [18], [19], [20]. In shape retrieval, relevance feed-
back (RF) [21], [22], [23], [24], [25], [26] has been used to
bridge the gap between geometric features and semantics.
Their approach is based on supervised feature extraction,
i.e. using user input of liked or disliked examples to find an
improved feature space for better discrimination.

Data driven shape analysis. The availability of large model
repositories also helps shape analysis. Wang et al. [27] use
active learning to segment shape sets in a semi-supervised
manner. Consistent semantic labeling is obtained with a
sparse set of user constraints. Huang et al. [28] use a semi-
supervised approach to categorize shapes in a collection
into fine-grain classes. To explore models of the same cate-
gory, Ovjanikov et al. [29] propose a method to manipulate
a template shape to explore similar shapes. Kim et al. [30]
also use a template to learn the part-based variance of the
model set. Kim et al. [31] use fuzzy correspondence to align
models and select corresponding regions of interest on

Fig. 1. Interactive exploration of chairs. (a) user input (sketch), (b) initial models retrieved, (c) with user preference highlighted (green for liked models
and red for disliked ones), (d) result of global active learning, (e)(f) selected region of interest, (g) results of local active learning, (h) more models are
revealed when zooming in.
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models in the dataset. These data-driven techniques pro-
vide more intuitive interaction and give a better idea of
overall model distribution. However, they are generally
restricted to a relatively small number of models (typically
hundreds although [30] is able to cope with a few thousand
models) due to the expensive co-analysis and more impor-
tantly only applied to models of the same category for co-
analysis to be robust. Huang et al. [32] use functional map
networks [33] to jointly analyze collections of similar
shapes. Huang et al. [34] use the category tree to organize
a heterogeneous collection of models for overview and
exploration. While able to cope with models of different
categories using a qualitative distance measure, the time
complexity is Oðn2Þ where n is the number of models, and
processing large repositories would be prohibitively expen-
sive. Kleiman et al. [35] propose an approach that organizes
shapes in a dynamic, regular 2D grid for model browsing.

To enable effective exploration of largemodel repositories,
our approach is based on active learning, which unlike rele-
vance feedback, takes into account both feature similarity to
the user specified models and the potential effect of the user
expressing their preferences. While effective, active learning
typically requiresOðn2Þ computation, which is not scalable to
large model databases. With the aim of exploration of large
number of models, we improve upon existing generic
approaches by dynamicallymaintaining a small set ofmodels
for active learning, exploiting the relationship of geometric
models and based on this, presenting the models in a
parametric spatial embedding. The idea of using a parametric
space is related to the work by Talton et al. [36] where they
explore the parameter space to create new models for casual
users. A small number of landmark models are used in their
work while our approach deals with exploration of large
number ofmodels in the repository in a hierarchicalmanner.

3 SYSTEM OVERVIEW

Our algorithm allows users to efficiently find models of
interest in a very large model repository through an intui-
tive graphical interface. Starting with a 2D sketch or a refer-
ence 3D model, the system returns an initial set of candidate
models which are arranged according to their relevance
and mutual similarity. The user can incrementally refine
the query by labeling some of the candidates either entirely,
or only local parts of them, as “like” or “dislike”. This

information is fed into an active learning procedure and the
set of recommended candidate models is updated. The
pipeline of our system is illustrated in Fig. 2.

Themain technical challenge is to establish a distancemet-
ric between the models in the database where the computa-
tional and memory complexity scales (nearly) linearly with
the number of models (instead of quadratically) andwhich is
sufficiently expressive to reliablymodel themutual similarity
between arbitrary shapes. We achieve this by first deriving a
sparse distance matrix, which only contains non-zero entries
for models that are sufficiently similar. With this reduction
we are not losing any relevant global similarity information
since in practice, the distance measures for largely different
3Dmodels are not verymeaningful anyway. In order to prop-
agate the sparse distance metric to all pairs of models, we
compute a heat diffusion embedding (cf. Section 4.1).

To also enable the labeling of local parts of candidate
models, we have to establish local correspondences between
all the models in the database. Again, we reduce the compu-
tational complexity from quadratic to linear by propagating
correspondence maps through a sparse similarity graph (cf.
Section 4.2). Notice that all the distance and correspondence
computation is performed in an offline preprocessing step
and does not slow down the interactive exploration.

In the online stage, when the user draws a 2D sketch (or
provides a 3D reference model), sketch-based [8] (or model-
based [6]) shape retrieval techniques return a number of
models similar to the input. Active learning is used to itera-
tively refine the obtained candidate models. To deal with a
large number of models, a dynamic subset of relevant mod-
els is maintained. Models are organized in a 2D parametric
space based on their mutual similarity so that the overall
distribution of models can be perceived at a glance, which
helps the user to better understand the distribution of rele-
vant models and enter their preference (Section 5).

4 SCALABLE MODEL SIMILARITY METRICS

For each model in the repository global and local metrics are
precomputed, along with the sparse relationship between
similar models.

4.1 Global Similarity Metrics

To make the global query operations effective, we use a
global similarity matrix to represent the relationship

Fig. 2. System pipeline.
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between pairs of models. But to also guarantee efficiency,
we only explicitly calculate similarities for models that are
sufficiently similar, leading to a highly sparse matrix which
is precomputed in the offline stage. In the online stage, we
also propose cross voting for effective retrieval.

In this work, the light field descriptors [6] are used as
global features as they are known to be well suited for
model retrieval [37]. Recent descriptors such as Heat Kernel
Signatures [13] are insensitive to isometric deformation,
however such descriptors generally assume manifold surfa-
ces, whilst many models available are of poor connectivity.
To calculate light field descriptors, the models are scaled to
fit in a regular dodecahedron and cameras are put in each
vertex to get 2D images. Each image is converted into a
47-dimension signature, including Zernike moments and
Fourier descriptors. The 20 images from a particular orienta-
tion of the dodecahedron form a complete set of descriptors
to represent the model for this orientation. The light field
distance between a pair of models is defined as the L1 vector
distance between the signatures after an optimal rotation is
applied, making it robust to rotations [6].

Finding close models in the light field distance is expen-
sive as thousands of combinations are considered for each
pair of models. We propose a simple and efficient heuristic
to suggest similar models. Based on the assumption that
similar 3D models have well matched 2D views, we put sig-
natures of every view of every model in a kd-tree and use it
to efficiently suggest potential models for calculation of the
light field distance. For each image of one model Mi, we
find the nearest k images (k ¼ 6 in our experiments) using
the L1 metric in the kd-tree, and take their corresponding
models Mj as candidates. The light field distances between
Mi and each Mj are calculated. Notice that the number of
models Mj that need to be compared to Mi is typically
much smaller than the theoretical maximum of 20� 6 ¼ 120
since several models appear multiple times in the k-nearest
signatures lists. For eachMi we eventually keep the k closest
models based on the light field distances. For the model pair
Mi and Mj, we add both entries ði; jÞ and ðj; iÞ in the sparse
light field distance matrix Sd, leading to a symmetric matrix.
The non-zero entries in Sd form a sparse graph Gd with
edges connecting similar models. We further define the sim-
ilarity matrix as follows:

Wði; jÞ ¼ exp �Sdði; jÞ2
s2
1

( )
; (1)

where s1 is a scale parameter (s1 ¼ 4000 is used throughout
the paper). This gives a normalized similarity with 1 repre-
senting identical LFD and close to 0 if models are suffi-
ciently different.

To quickly estimate the distance between an arbitrary pair
of models, we follow the diffusion framework [38] which
gives an optimal low-dimensional heat diffusion embedding
as follows. Given the similarity matrix W representing
the (unnormalized) transit probability between models, we
first define D ¼ diagðPj WijÞ and the normalized matrix Z

is defined as D�1W . As discussed in [38], Z is similar to the

real symmetric matrix D�1
2WD�1

2, thus the eigenvalues of
matrix Z are real values. With the normalization, the

eigenvalues are distributed as 1 ¼ �0 � �1 � � � � > 0. The
eigenvector y0 corresponding to the first eigenvalue �0 is a
vector containing identical entries. Discarding y0 corre-
sponds to shifting the center of gravity of each model to the
origin such that the diffusion coordinates fi for model Mi

are obtained by taking the eigenvectors corresponding to the
l largest eigenvalues:

fi ¼
�
�t
1y1ðiÞ; �t

2y2ðiÞ; . . . ; �t
lylðiÞ

�
; (2)

where yjðiÞ is the ith component of yj, t is the timescale of
diffusion analysis, and l determines the dimension of the
embedding space. t ¼ 10 and l ¼ 50 are used in all our
experiments. The diffusion distance between two models
Mi and Mj is then defined as the Euclidean distance in the

embedding space d̂ði; jÞ ¼ kfi � fjk2. With the embedding

space precomputed, the diffusion distance is efficient to cal-
culate. The nearest neighbors in the diffusion distance can
be efficiently retrieved using kd-tree acceleration.

We performed quantitative comparisons of different
shape descriptors using the retrieval tasks on the Princeton
Shape Benchmark [37] with ground truth labels (Fig. 3). The
precision-recall (PR) curves of the original light field
descriptors, our heat diffusion accelerated embedded LFD,
spherical harmonic descriptors and the degree of separation
(the number of edge hops between models) in the categori-
zation tree (CT) [34] are shown. CT is more suitable for the
exploration and quality measurement of heterogenous mod-
els and does not work particularly well for such data.
Although the original LFD feature is effective for retrieval,
distances need to be calculated between every pair of mod-
els, which takes quadratic preprocessing time and thus does
not scale well to large model repositories. Moreover, it is
demanding to store pairwise distances. With Oðn2Þ memory
cost, ordinary computers are not able to process large repos-
itories. Our heat diffusion embedded LFD has similar per-
formance as the original LFD, but can be calculated much
more efficiently (nearly linear preprocessing time), making
it suitable for large repositories, as shown in Fig. 4. Both
descriptors are significantly better than SHD.

In the online stage, the user starts by giving some initial
input to express their desired target. This can be a similar
model or a rough sketch [39]. As will be shown later, even if
the example model or sketch is quite far from the models of
interest, our active learning approach is able to find the
models with a small effort of user interaction. K (typically
200 depending on the number of models of interest) good

Fig. 3. Precision-recall curves of different shape features on the
Princeton Shape Benchmark.
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matches are retrieved for exploration. As initial retrieval is
not very robust, 2 K models closest in sketch (or geometric
feature) are first returned with a similarity score hðiÞ repre-
senting how well the model matches the input, which may
not be an accurate representation of similarity. Under the
assumption that geometrically similar models have similar
similarity scores and the majority of the models returned
are correct, we propose a cross voting algorithm that produ-
ces the refined score SðiÞ as the average of scores of similar
models hðjÞ, weighted by similarity derived from the diffu-

sion distance d̂ði; jÞ,

SðiÞ ¼
X
j

hðjÞ exp � d̂ði; jÞ2
s2
2

( )
; (3)

with s2 ¼ 0:001 in our experiments. In principle all the 2K
models are considered; however, due to the local support
nature of the weights, only those models in the local neigh-
borhood ofmodel i in the feature space are effective. We keep
K models with the largest refined score for subsequent con-
sideration. An example is given in Fig. 5 where the top row
shows the initial matches based on the drawn sketch (car),
and the second row based on the refined score, both in
descending order of the similarity scores. The effectiveness of
cross voting is also quantitatively evaluated bymeasuring the
precision (the percentage of correct models) in theK initially
retrieved models from our large repository containing over
100K models, either directly or with cross voting. The recall
is not feasible to obtain as assigning ground truth labels for all
the models is impractical. As shown in Table 1, the precision
improves significantlywith cross voting.

4.2 Local Similarity Metrics

Global properties provide a useful tool to measure the sim-
ilarity of the whole models. In addition, local similarity
helps to fine-tune the active learning based on local fea-
tures. As before, we directly compute fuzzy correspon-
dence only for similar models (Section 4.2.1) and the

information is then propagated to an arbitrary pair of mod-
els. This ensures efficiency but also helps to improve
robustness. The local correspondence is propagated using
an augmented local graph with increased connectivity to
ensure robust propagation (Section 4.2.2). This is then used
to propagate user selected local regions to similar models,
which are further refined using a Markov Random Field
(MRF) approach (Section 4.2.3).

4.2.1 Alignment and Fuzzy Correspondence

We compute fuzzy correspondence between models based
on the initial co-alignment derived from the light field cal-
culation. We first apply furthest point sampling on each
model using Euclidean distances to obtain m points
(m ¼ 256 in our experiments), and scale the model to fit
within a unit bounding sphere. Euclidean distance is used
for both efficiency and robustness to non-manifold meshes.
Rigid transforms that give small distances of light field sig-
natures (following the calculation of light field descriptors)
are used as candidates, and the alignment is obtained by
finding the transform with the minimal overall distance
between sample points.

Given two models, namely Msrc and Mtgt, for every sam-
ple point pi on Msrc, we can find a nearest point �pti on Mtgt

according to the initial alignment from the light field match-
ing. We estimate a fuzzy distribution of correspondence for
each vertex. The basis vector fi for source vertex i is a
Kronecker delta function fiðpkÞ ¼ dik, which is 1 for k ¼ i
and 0 otherwise. The corresponding distribution on Mtgt is
estimated based on geometric and feature closeness. For
any sample point �pk on Mtgt within a sphere centered at �pti
(with a radius of 0:15 in our experiments) the unnormalized
correspondence response is calculated as

�fið�pkÞ ¼ Gð�pk; �ptiÞSð�pk; piÞ; (4)

where Gð�pk; �ptiÞ is based on geometric closeness to the esti-
mated target, and Sð�pk; piÞ is based on feature closeness to
the source point. We define

G
�
�pk; �pti

� ¼ exp �k�pk � �pti
k2

s2
3

( )
; (5)

S
�
�pk; pi

� ¼ exp �k�sk � sik2
s2
4

( )
; (6)

where k � k is the L2 norm, �pi is the geometric coordinates of
vertex i on Msrc and Mtgt respectively, and si and �si are the
geometric feature vectors at vertex i on Msrc and Mtgt. We

Fig. 4. Preprocessing times using original LFD (blue) and heat diffusion
embedded LFD (green).

Fig. 5. The obtained models without (top row) and with (bottom row)
cross voting.

TABLE 1
Comparison of the Precision of the Initial Retrieval Results either

Directly or After Using Cross Voting

Example Directly (%) With Cross Voting (%)

Chairs (Fig. 1) 53:5 70:5
Humans (Fig. 11) 55:0 64:0
Quadrupeds (Fig. 11) 13:0 29:5
Cars (Fig. 11) 85:0 91:0
Fighters (Figs. 9 and 12) 52:0 64:5
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use unique shape context [40] due to its distinctiveness, and

the distribution �fi is then normalized to sum to one. The
unique shape context captures sufficient local geometric
information despite a sparse sampling. s3 ¼ 0:4 and s4 ¼ 7
are used in our experiments.

Given each basis vector fi on Msrc, the mapped distribu-

tion �fi on Mtgt can be calculated using Eqn. (4). The fuzzy
correspondence map Tsrc!tgt maps an arbitrary distribution
on Msrc to a distribution on Mtgt. Assuming this mapping is
linear, it satisfies

Tsrc!tgtðf1; f2; . . . ; fmÞ ¼ ð�f1; �f2; . . . ; �fmÞ; (7)

where Tsrc!tgt is the matrix representing the mapping,

fi and �fi are column vectors, ðf1; f2; . . . ; fmÞ and

ð�f1; �f2; . . . ; �fmÞ form two matrices. Since ðf1; f2; . . . ; fmÞ is an
identity matrix, Tsrc!tgt ¼ ð�f1; �f2; . . . ; �fmÞ. Given a subset of
sample points g on Msrc, a distribution function f can be
defined as a vector with fðiÞ ¼ 1 if pi 2 g and fðiÞ ¼ 0 other-

wise. The corresponding distribution vector �f on Mtgt can

be obtained as �f ¼ Tsrc!tgtf . If an edge exists in the sparse
graph Gd between a pair of models Mi and Mj we precom-
pute Ti!j and Tj!i in the offline stage.

4.2.2 Correspondence Propagation Using N-Order

Graph

During the interactive exploration, a set of K models are
maintained as active candidates. A subgraph G of the global
sparse graph Gd is then extracted from the database, keep-
ing those vertices corresponding to models in the active can-
didate set and their adjacent edges. As establishing
correspondences between significantly dissimilar models
would be unreliable, we rather propagate fuzzy corre-
spondences calculated for neighboring models (as in the
previous subsection). However, when the path connecting
two models is too long, the propagation quality may also
drop. We thus propose to augment the subgraphG to obtain

a graph ~G with stronger connectivity to robustly propagate
fuzzy correspondence between models. Let us denote by V
the nodes of G. For a given source node s, the order of a ver-
tex v is defined as the length of the shortest path from v to s.

An N-order graph ~Gs w.r.t. the source s satisfies that for
every node v 2 V , there exists a path P from v to s with its
length (the number of edges) jPj � N .

We use a greedy approach to incrementally add new
edges to G. For this purpose, the order of each node can be
obtained by breadth-first traversal from s. We maintain two
sets of nodes V1 with all the nodes of order less than N and
V2 with all the nodes of order more than N . We find vi 2 V1

and vj 2 V2 such that the light field distance between vi and
vj is minimum. Light field distances are only calculated on a
candidate set of pairs which are efficiently obtained using
diffusion distances. After adding the edge ðvi; vjÞ, the node
orders are updated. We compute the fuzzy correspondence
map between vi and vj directly using the method in Sec-
tion 4.2.1. Since adding the edge ðvi; vjÞ makes vj of order N
or less, vj (possibly also some of vj’s neighbors) will be
removed from V2. With at most jV2j iterations, the set of V2

will become empty and the obtained graph isN-order.

Given a shortest path P : s; i1; i2; . . . ; iu of length u, we can
obtain the propagated correspondence map

Ts!iu ¼ Tiu�1!iu . . .Ti1!i2Ts!i1 : (8)

As demonstrated later, setting N too large or too small both
lead to less robust results. N ¼ 2 generally works well and
is used in our experiments.

4.2.3 Part Selection Propagation

To allow local active learning, user selection is propagated
to other models as follows. When the user selects a part on a
model Msrc, we take Msrc as the source node to build an
N-order graph and obtain the propagated fuzzy correspon-
dence map Tsrc!tgt to any model Mtgt in the current set. The
selected region is represented as the source distribution fsrc
with 1 representing selected sample points and 0 unse-
lected. The target distribution is simply obtained as
ftgt ¼ Tsrc!tgtfsrc. ftgt is a fuzzy selection and to obtain a dis-
crete label lp for each sample point p onMtgt with lp ¼ 1 rep-
resenting selected points and 0 otherwise, we use a Markov
Random Field (MRF) that minimizes the following energy,
taking into account both the local probability and the spatial
closeness:

EðLÞ ¼
X
p

DpðlpÞ þ
X
fp;qg

Vpqðlp; lqÞ; (9)

where L ¼ flpjp 2 Pg represents an assignment of labels
and P is the set of sample points. The first term sums over
all the sample points p 2 P with the penalty being the
uncertainty of assigning label lp to the sample point p, which

is defined as Dpðlp ¼ 0Þ ¼ min ftgtðpÞ; 1
� �

, and Dpðlp ¼ 1Þ
¼ max 1� ftgtðpÞ; 0

� �
. The second term is a regularization

term that conceptually sums over all pairs of sample points

fp; qg defined as Vpqðlp; lqÞ ¼ expf�dðp;qÞ2
s2
5

gðlp � lqÞ2. Due to

the Gaussian local support nature of the weight function,
only neighboring samples need to be considered in practice.
dðp; qÞ is the Euclidean distance between sample points
p and q, and s5 ¼ 0:15 is used in our experiments. The MRF-
based optimization is efficiently solved using graph cut [41].

An example in Fig. 6 demonstrates local correspon-
dence. The user selects an engine region on a plane model
(a), and the corresponding regions on another plane model
obtained by thresholding fuzzy correspondence responses
are shown in (b-d). Using geometric closeness in Eqn. (4)
alone, the obtained region in (b) does not align with the
actual engine. Using features alone, the obtained region in
(c) spreads over the plane including part of the engine on
the other side. Using both geometric and feature closeness
(d), the engine is correctly mapped. The result is further
improved by using the MRF-based optimization (e). In this
case, a small wheel part is successfully removed from the
corresponding region.

5 ACTIVE LEARNING BASED EXPLORATION

To effectively explore models in a large database, we use an
active learning approach to iteratively refine the results
based on user input. Unlike traditional active learning, our
approach allows users to choose models or parts that they
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like or dislike, and retrieves and presents the updated set of
suitable models at interactive rate. We first build an aug-
mented local graph with sufficient connectivity to ensure
robust active learning and visualization (Section 5.1). The
user is allowed to specify their preference either based on
whole models or selected parts. Global active learning is
used to improve retrieved models based on whole models
whereas local active learning is used for exploiting local
preference information. Details of global and local active
learning are then given in Sections 5.2 and 5.3 respectively.
At any time we maintain a dynamic set t of candidate mod-
els, starting with those returned from the initial search,
which permits efficient exploration of the model database
(Section 5.4). The user interface organizes the retrieved
models in a 2D parametric domain, with the most relevant
models emphasized. Thus the user can easily capture the
overview of the relevant models, making user preference
specification more efficient (Section 5.5).

5.1 Augmented Local Graph

Given the dynamic set of models t and the existing edges
from the global database (the sparse graph Gd), as shown
later in the section, we need a sufficiently well connected
graph to allow efficient active learning and embedding for
visualization. Let us denote Gt as the subgraph of Gd con-
taining nodes in t and edges involving nodes in t. We first
augment the local graph Gt with additional edges such that

every model has at least �k neighbors (�k ¼ 4 is used in experi-
ments). This is achieved by checking each model in turn and
adding edges to the closest models according to the diffu-
sion distance (due to its efficiency). After this, the obtained
graph may still have multiple disjoint components. We use
Prim’s algorithm to construct a minimal spanning tree
which connects the components. Edges are added incre-
mentally between that pair of models belonging to different
connected components with the minimal diffusion distance,
until the graph is connected. We denote the augmented

graph �Gt ¼ ð �Vt; �EtÞ, where �Vt is the node set and �Et is the
edge set. In practice only a small number of auxiliary edges
are added which does not have significant effect on the
performance.

5.2 Global Active Learning

Let us denote yi as the preference for the ith model in the
current model set t. yi ¼ 1 (or 0) means the user likes (or
dislikes) the model in this exploration. We relax yi to be a
real variable [17]. And denote y to be the vector of yi’s. Simi-
lar models usually have similar preference values. Global

active learning finds a labeling by finding y that minimizes

the following global energy over the augmented graph �Gt :

E �Gt
ðyÞ ¼ 1

2

X
i;j:ði;jÞ2 �Et

Wijðyi � yjÞ2; (10)

where Wij is the similarity between models Mi and Mj, as
defined in Eqn. (1). The solution of Eqn. (10) is a harmonic
field, which can be efficiently obtained by solving a linear
system. When the user selects the liked and disliked mod-
els, the operation defines the Dirichlet boundary condition
of the harmonic field.

5.3 Local Active Learning

To give the user more flexibility, we further propose local
active learning which allows the user to select some part of
a model and indicate whether this part is liked or not.
Assuming modelMi is selected, for any modelMj we obtain
the label on the model Mj using the maps T described in
Section 4.2 which effectively selects a set of sample points
on Mj. In order to measure the similarity between the
selected part on Mi and corresponding part on Mj, we take
precomputed shape context signatures [40] for selected sam-
ple points on models Mi and Mj, which are denoted as Ci

and Cj. Both matrices are of sizem� q, wherem is the num-
ber of sample points and q is the dimension of the feature.
The matrix entries are zeros for those rows related to unse-
lected sample points. The feature distances between the
fuzzy correspondence regions are calculated as

�dði; jÞ ¼ kTi!jCi � CjkF ; (11)

where k � kF is the Frobenius norm of the matrix. From the
function map point of view [42], the signatures are the func-
tions defined on the sampling points and Ti!j is the func-
tion map. The bases are the indicator functions on the
sampling points. If two models do not have a corresponding
part, the shape context signatures will be very different. So

the �dði; jÞ will be large. We add the following local energy
terms to the function to be minimized (Eqn. (10)):

ELðyÞ ¼ 1

2

X
j

exp �
�dði; jÞ2
s2
6

( )
ðyj � vjÞ2; (12)

where vj is 1 if the user likes the part (that penalizes small
values) and 0 otherwise. s6 ¼ 6 is used in experiments.
Global preference is usually used along with local prefer-
ence, and we thus minimize E �Gt

þEL, which leads to a lin-

ear system that can be efficiently solved. An example is

Fig. 6. An example demonstrating local correspondence. (a) an engine selected by the user from one model. (b-d) Corresponding regions in another
model using thresholding of fuzzy correspondence response, with only geometric closeness (b), feature closeness (c) and both (d). (e) the final
region after the MRF-based optimization.
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given in Fig. 7 showing the preferred models after selecting
one chair globally (top row) or locally in the back of the
chair, as highlighted (bottom row). Local active learning is
more effective in expressing the preference for local regions,
as the results show more chairs that have the similar back.

5.4 Dynamic Set

Since the model repository can be very large, direct applica-
tion of active learning to the whole data set is prohibitively
expensive. Our solution is to instead maintain a small
dynamic set t containing a subset of K models. In each
interaction step, we propagate the user interests to the
whole repository by allowing new relevant models to be
added and irrelevant models to be removed dynamically.

After each interaction, we propagate the preference field
yi to the neighboring models in the global repository. For

each model in t, we find ~k nearest models in the diffusion

distance, accelerated using a kd-tree. We take ~k ¼ 10 in this
work. Assuming model Mj is one of the neighbors of model
Mi 2 t currently being considered, the propagated prefer-

ence value is defined as pi!j ¼ yiexpf� ~dði;jÞ2
s2
7

g; where ~dði; jÞ
is the diffusion distance between Mi and Mj. s7 ¼ 0:01 in
our experiments. The total propagated value for Mj is the
sum of propagation received from all the neighbors in t, i.e.
pj ¼

P
i:Mi2t pi!j:

The dynamic set t is first updated by adding T newmod-

els with the largest propagated values. We set T ¼ K
4 in our

experiments, where K ¼ jtj is the size of the dynamic set.
Given the same user preference as boundary conditions, we
obtain the updated preference values by minimizing the
active learning energy E �Gt

or E �Gt
þ EL like described in the

previous section. The models with lowest values except for
the user labeled ones will then be removed. This maintains
a consistent number of active models and ensures interac-
tive performance. While previous co-analysis based explo-
ration methods may be able to handle a repository
containing K models, they are not directly applicable
because the dynamic set is updated after each user interac-
tion, and such methods typically require minutes for pre-
processing, given a new set of models. Also, most methods
are designed for models of the same category which is not
generally satisfied for t.

5.5 User Interface Design

In order to present the active set of candidate models to the
user in a way that intuitively conveys the current state of
the exploration session, we develop a user interface that is
designed to provide as much information as possible with-
out generating excessive visual clutter. Our interface con-
cept is based on presenting the 3D models over a 2D plane

while their relative position and size encode their similarity
and relevance respectively.

Position.When the user is confronted with an unsorted set
of candidates, it is difficult to obtain a structured assessment
of what types or classes of models are available. Hence, we
determine the relative position of the models such that simi-
lar models are grouped closer together. This can be achieved
by applying the Isomap [43] algorithm to compute a 2D
embedding of the models that locally preserves their relative
distances from the light field descriptor space.

Size. To express the different degrees of relevance for the
refinement of the exploration, we scale the models accord-
ing to their preference but also by their potential to have
significant impact on the candidate set update when they
are labeled as “like” or “dislike”. For this we use a mea-
sure for the risk of misclassification (= uncertainty), and
the risk of each model is defined as the modified total risk
when the model is assigned a label. The labeling of low-
risk models by the user has more impact on the explora-
tion than the labeling of high-risk models since for high-
risk models the labeling is uncertain while low-risk models
more effectively reduce the ambiguity among the candi-
dates. Hence we display models with high preference and
low risk larger. More specifically, given a label assignment
L, the risk is defined as

RðyÞ ¼
X
i

X
vi¼0;1

½sgnðyiÞ 6¼ vi�pðyijLÞ; (13)

where sgnðxÞ is 1 if and only if x > 0:5, ½�� is 1 if the condi-
tion is true and 0 otherwise, pðyijLÞ is the probability of yi
given the label assignment L. The expected modified risk is

Ri ¼ ð1� yiÞRðyjyi ¼ 0Þ þ yiRðyjyi ¼ 1Þ; (14)

which considers the expected impact on the risk with the
additional preference specified for the model i [17]. Ri is

normalized by linear scaling to ½0; 1], denoted as R̂i. The
size of the model Mi in the parametric domain is deter-
mined by a radius ri, defined as ri ¼ r0 ð1� �Þyi þ �ð
ð1� R̂iÞÞ, where � is a constant balancing the weights of
both terms (� ¼ 0:3 in experiments), r0 is a global scaling
factor set to 0:3, with the 2D parameter space normalized to

½�1; 1�2.
Clustering. Finally, in particular in large model reposito-

ries, we often find a large number of very similar models
which can lead to visual clutter, making it difficult for the
user to keep a good overview. This is why we apply a clus-
tering scheme that replaces groups of similar models by one
representative each. Only if the user zooms in on one of
these representatives, the group members are displayed to
enable a refined exploration.

We maximize the following function to decide which
models are to be selected for visualization:

EV ðxÞ ¼
X
i

ð1� �Þyi þ �ð1� R̂iÞ
� �

xi;

s:t: 8i;
X

kPi�Pjk<riþrj

xj ¼ 1;
(15)

xi is a 0-1 variable indicating whether the model is selected
as a representative for visualization. Pj is the 2D position of

Fig. 7. Global (top row) vs. local (bottom row) active learning: Models in
descending order of preference yi.
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the model Mj in the parameter space. The constraint
kPi � Pjk < ri þ rj ensures that there is no overlap between
two models in the parameter space (and 3D space). This is a
0-1 programming problem which is efficiently solved using
a branch-and-bound algorithm [44]. It takes less than 0:12
second for all the examples in the paper. The parameteriza-
tion and representative model selection are illustrated in
Fig. 8 (corresponding to the example in Fig. 1g) where each
red dot represents a model in t and blue circles indicate the
size of the bounding sphere for each representative model.
Our method effectively finds representative models without
overlapping in space. When the user zooms in, a portion of
the 2D parameter domain is mapped to cover the whole
view space, by linearly scaling the coordinates. The distan-
ces between models become larger. Thus more models can
be revealed without overlapping.

6 RESULTS

Our experiments were carried out on a computer with a
2.4 GHz Intel E5620 CPU and 16 GB memory. Our model
repository contains 103;738models from the following sour-
ces: 18;312 models from Tsinghua 3D model repositories
[45], 10;911 models from the light field retrieval repository
[6], 1;814 models from the Princeton shape benchmark [37],
1;200 models from SHREC’12 [46], 380 models from the
Princeton shape segmentation benchmark [47]. The remain-
ing models are from Google 3D warehouse [1]. Duplicate
models (automatically detected as models with identical
shape descriptors) are removed.

Running times and comparisons. The one-off preprocess-
ing time for the repository after calculating geometric
features is 9;524 seconds (about 2:65 hours). For a reposi-
tory with n models, finding the neighboring models
takes Oðn log nÞ time and computing the first few eigen-
vectors of the sparse matrix was performed using the
Lanczos algorithm, which takes linear time in the non-
zero elements (OðnÞ). The preprocessing thus takes
Oðn log nÞ and can be easily parallelized. This shows that
our method scales well with large model repositories.
For examples in the paper, the average time of the initial
sketch-based retrieval is 1:72s. The total duration of each
interactive session using global or local active learning
are reported in Table 2. The average time of our global
active learning is 0:75s in these examples, and the aver-
age time of Leng’s relevance feedback method [24] is
1:62s. Note however their method is only for shape

retrieval rather than exploration, and does not consider
relationship between models.

Parameter settings. Our method has a few parameters;
the fixed values reported in the paper were found empiri-
cally and worked well for all the examples presented. The
only adjustable parameter is the number of models K in
the dynamic set (200 by default), which is specified by
the user depending on how much model variation the
user prefers to exhibit at the same time. As shown in
Fig. 10, with increasing K, more variations of models
from the repository are presented, while the number of
models displayed is more or less fixed, because this is
restricted by the limited screen space. These examples
also show that our system generally performs well for a
wide range of K. The numbers of examples in the paper
are reported in Table 2. The running time increases with
the size of the dynamic set but for all the examples in the
paper it takes less than 3 seconds and so is well suited
for interactive exploration.

We demonstrate the effectiveness of our method by
exploring various models of interest (Figs. 1, 11, 12). Liked
(disliked) models specified by the user are highlighted in
green (red). The user may also select some region of a model
and express their preference. Models are placed in the 2D
parametric space with important models (those the user
likes most or most useful for active learning) shown bigger
in the exploration. Only representative models are rendered
and the user is also allowed to zoom in at some local region
such that more models are revealed. For the initial explora-
tion, the original orientation of the models is used for ren-
dering as it is less reliable to establish correspondence
between significantly different models. To provide more
aesthetically pleasing rendering, the models in the reposi-
tory have correct “up” direction, which may come from the
original source, can be automatically computed [48] or spec-
ified manually when the repository is compiled. In later
stages of interaction, the alignment between models are
used so that they can rotate consistently. We use the

Fig. 8. The parameter space for visualization. Each red dot corresponds
to a model and blue circles indicate representative models and their
sizes.

TABLE 2
Statistics of Different Exploration. tg, tl: Running Times with

Global as Well as Global and Local Active Learning

Example tg (s) tl (s) K

Chairs (Fig. 1) 0:745 2:640 200
Humans (Fig. 11) 0:779 1:789	 200
Quadrupeds (Fig. 11) 0:732 1:655	 200
Cars (Fig. 11) 0:429 0:998	 100
Fighters (Figs. 9 and 12) 0:756 2:940 200

K: dynamic set size. 	for alignment only.

Fig. 9. Exploration of fighters. (a) alignment with N ¼ 2, (b) alignment
with N ¼ 5, (c) direct model alignment vs. via an intermediate model.
The solid red rectangle corresponds to the dashed red rectangle when
zoomed in with more models revealed.
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selected model (for local active learning), or the model with
the minimal overall diffusion distances to other models in t

(for global active learning) as reference and align all the
other models to it.

Fig. 9 shows an example of exploring fighters. With a
couple of active learning steps the rendered models are all
fighters. However, alignment obtained using local corre-
spondence works much better when the N-order graph is
constructed with N ¼ 2 (a) instead of N ¼ 5 (b). Using
N ¼ 2 is also more robust than finding correspondence
directly, as demonstrated by the example in (c) where direct
alignment gives an inappropriate result (top arrow)
whereas alignment via an intermediate model gives correct
alignment (bottom arrow). Increasing N tends to reduce the
number of added edges and N ¼ 2 works well for all the
examples in the paper.

Fig. 11 shows three active exploration examples, the
first two (humans and quadrupeds) with sketch as input
and the third (cars) using a model. The initial retrieval
results contain irrelevant models, such as missiles for the
human example, tables and beds (containing four legs)
for the quadruped example. By using one or two itera-
tions of active learning, relevant models are preserved
and presented in a way with similar models being closer
to each other, effectively giving an overview of relevant
models. As local distances between neighboring models
are used, our method is able to obtain models with mod-
erately different poses or shapes (see e.g. humans). For
the third example, although the input model (an SUV) is
quite different from the models to be explored, the aim is
achieved by using active learning with only a small num-
ber of labeled examples, demonstrating the effectiveness
of active learning.

Figs. 1 and 12 show some examples of exploring chairs
and fighters, with both global and local active learning. For
the exploration of chairs, initial sketch based results involve
irrelevant models such as a drum and a robot. With simple
user interaction, non-chairs are removed. By using a local
region, chair models with the similar handle shape are
emphasized. For the fighter example, while the initially
retrieved models are presented with relevant models clus-
tered in close regions, they also contain irrelevant models
such as a missile. Active learning is effective to select mod-
els of interest with a small amount of user interaction. The
local region preference is more useful in this case to specify
fighters with a similar secondary tank. The zooming in fea-
ture allows more relevant models to be displayed.

Retrieval comparison. Although the purpose of our work is
exploration of large model repositories, our method can be
used for model retrieval and in this sense we quantitatively
compare our work with other relevance feedback based

Fig. 10. Results with different dynamic set sizesK. From left to right: results of global active learning with K being 50, 100, 300 and 400, respectively.
Models are retrieved using the same sketch as Fig. 1. Top row: initial retrieval results with user preference; bottom row: results after active learning.

Fig. 11. Exploration of humans, quadrupeds and cars. (a) user input (drawn sketch/specified model),(b) initially retrieved models with liked (in green)
and disliked (in red) models, (c)(d) results obtained with one and two iterations of global active learning, (e) zoom in.

Fig. 12. Exploration of fighters. (a) user drawn sketch, (b) initially
retrieved models with liked (in green) and disliked (in red) models, (c)
result with global active learning, (d) selected local region highlighted (e)
result of local active learning, (f) zoom in.
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retrieval methods [21], [22], [23], [24] on the Princeton Shape
Benchmark which contains the ground truth labels. The
work [25] uses Support Vector Machine (SVM) thus requires
a training stage and the work [26] combines 10 different fea-
tures many of which cannot be applied to models of poor
connectivity. Thus these methods cannot be directly applied
to the repositories considered in this work and are not suit-
able for direct comparison. Fig. 13 shows the average perfor-
mance. Following the experimental set up in the previous
work [24], we take the seven categories with most models
and use each model as input. Doing so avoids categories
with too few models and thus user feedback would become
too strong a constraint, oversimplifying the problem. For all
the methods, correct manual labeling is provided as user
preference for the top 20 returns. We then measure the
Average Precision, First-Tier, Second-Tier and DCG (see
[37]) (the larger the values, the better). Our active learning is
more effective than these relevance feedback based
approaches, because more detailed pairwise similarity is
taken into account, as demonstrated by the results.

Comparison with [31]. Both [31] and our method use fuzzy
correspondence for model exploration. [31] uses co-analysis
to obtain robust local correspondence; their method how-
ever is designed to handle relatively small datasets as the
complexity increases significantly with large datasets. Our
method scales well and is able to handle repositories with
more than 100K models in different categories.

We performed quantitative comparison with [31] using
all the two published datasets with ground truth (Chair and
Boeing) where Euclidean distances are used, as shown in
Fig. 14. We take a random model from each dataset (as
shown in the figure) and calculate the correspondence
between this model and all the remaining models in the
dataset. For key points, the deviations from the ground
truth in the Euclidean metric are calculated (as used for
evaluation in [31]). The graphs give the proportion (y-axis)
of key points in percentage whose deviation is within a
given threshold (x-axis). Although much simpler and more
efficient, our method achieves similar performance as [31].

As the dynamic set cannot be predetermined, even if [31] is
applied to a subset similar to the size of t, several minutes
would be needed, as reported in Table 4, which is not suffi-
ciently efficient for interactive exploration (although their
purpose is different and benefits from pairwise correspon-
dence which is not needed for exploration). Using N-order
graph (with N ¼ 2 by default) for correspondence propaga-
tion gives better results (and slightly faster) than directly
(N ¼ 1), as shown in Fig. 14 and Table 4.

User study. It is generally difficult to quantitatively evalu-
ate a system for interactive exploration. A user study is one
way to get at least some indicators. Since a comprehensive
user study is beyond the scope of this paper, we focus on a
simple task that asks the user to find a specific target model
in the database, starting from some initial queries (2D
sketches or representative 3D models), as shown in Fig. 15.
The 12 participants in our user study applied (1) a feature-
based ranking (direct) approach, (2) relevance feedback [24]
and (3) our approach. A counterbalanced approach is used
that assigns tasks and methods in a random order to each
subject to avoid a learning bias. The distribution of interac-
tion times is illustrated in Fig. 16 and the statistics are
shown in Table 3. On average our approach took the short-
est time across all the tasks. Using analysis of variance
(ANOVA) the p-values in Table 3 show that our approach is
superior to RF-based approach at p ¼ 0:001 level for three
tasks and at p ¼ 0:01 level for the Chair task.

Limitations. Our system has some limitations. The
light field descriptors we used are insensitive to rigid trans-
forms but may not be very effective for finding models

Fig. 13. Comparison of retrieval effectiveness with relevance feedback
approaches (values in percentage).

Fig. 14. Comparison of Euclidean error distribution with [31].

TABLE 3
Statistics of User Study

Task (a) human (b) chair (c) helicopter (d) car

td 95:17 91:44 128:77 81:54
tRF 90:99 70:25 103:35 65:84
to 52:77 40:41 64:01 43:21
p 2:08� 10�5 0:0090 1:82� 10�5 1:25� 10�7

td, tRF and to are the average interaction time (in seconds) of direct, relevance
feedback and our approaches. p is the p-value of statistical analysis between
our and RF approaches.

TABLE 4
Running Times of Our and Kim’s Approaches

Dataset Ours, N=1 (s) Ours,N=2 (s) Kim’s[31] (s)

Chair 0:908 0:804 183:36
Boeing 0:804 0:679 155:40

Fig. 15. Inputs/targets for user study. Top row: query sketches and mod-
els; bottom row: target models.
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under non-rigid deformation. Alternative signatures such as
Heat Kernel Signatures [13] may work better in such cases
but they may not be very robust for non-manifold models
which is a common problem for man-made objects. As dem-
onstrated in the first row of Fig. 11, our method is capable of
finding smoothly deforming models because we only apply
light field distances for sufficiently close models. As future
work we would like to explore a combination of various sig-
natures to handle diverse models more effectively. Feed-
back retrieval based on relative attributes similar to [49]
could be used to allow more subtle personal preference to
be expressed. New embedding techniques for visualization
may also be explored [50].

7 CONCLUSION

In this paper, a novel active exploration algorithm is pro-
posed for exploring large model repositories. As demon-
strated by various examples, active learning is effective in
obtaining relevant models with only a small amount of user
input. Unlike traditional active learning, our approach
maintains a dynamic set of models, allowing active learning
to be efficient even on a very large set of models. We use
both global and local geometric features to give the user
flexibility of specifying their preference either on the whole
models or in local regions of interest. We also propose novel
visualization to clearly present the models in the dynamic
set with the important models emphasized.
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