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Abstract

Hierarchical structure and different semantic roles of
joints in human skeleton convey important information
for action recognition. Conventional graph convolution
methods for modeling skeleton structure consider only
physically connected neighbors of each joint, and the
joints of the same type, thus failing to capture high-
order information. In this work, we propose a novel
model with motif-based graph convolution to encode
hierarchical spatial structure, and a variable temporal
dense block to exploit local temporal information over
different ranges of human skeleton sequences. More-
over, we employ a non-local block to capture global de-
pendencies of temporal domain in an attention mecha-
nism. Our model achieves improvements over the state-
of-the-art methods on two large-scale datasets.

1 Introduction
With the swell in popularity of real-time human motion es-
timation technologies, skeletal human motion data have be-
come widely and cheaply available. Due to the demand of
semantic descriptions of human motion data for the applica-
tions like medical monitoring, robot/human interaction, and
action analysis for sports and security, researchers have paid
more attention to skeletal human action recognition. Skele-
ton sequences are a kind of compact representation for hu-
man motion data, which can significantly reduce compu-
tational redundancy on semantic analysis. Thus, compared
to human action analysis from raw RGB or RGB-D video
sequences, recognition on skeleton has much better perfor-
mance when the background of a scene is complex (Ke et al.
2017; Kim and Reiter 2017; Zhang et al. 2017).

Conventional deep learning based methods usually struc-
ture a skeleton sequence by a time series of 2D or 3D joint
coordinates or pseudo-images, which are then sent into re-
current neural networks (RNNs) or convolutional neural net-
works (CNNs) to predict action labels (Kim and Reiter 2017;
Liu, Liu, and Chen 2017; Li et al. 2017; Song et al. 2017;
Zhang et al. 2017). In fact, it is more natural to describe
a skeleton as a graph with human body joints as nodes
and bones as edges. Thus, in recent works, graph convolu-
tional networks (GCNs), which generalize CNN from im-
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ages to graphs of arbitrary structures, have been successfully
adopted to model the skeleton data (Yan, Xiong, and Lin
2018; Tang et al. 2018). A spatial-temporal graph is firstly
constructed to model the physical connection of joints and
temporal edges between corresponding joints in consecutive
frames (Yan, Xiong, and Lin 2018). Then GCNs are com-
bined with progressive reinforcement learning to select key
frames of the whole video for extracting more representative
graph sequences to feed GCNs (Tang et al. 2018) .

Human body completes an action with the cooperation
of various parts. The cues for understanding human actions
not only lie in the relationship between spatially connected
joints, but also exist in the potential dependency of discon-
nected joints. For example, our hands and head are physi-
cally disconnected, but their relationship is useful for recog-
nizing the action “touch head”. An extrinsic dependency has
been introduced (Tang et al. 2018) for disconnected joints,
but they take the relationship between all pair-wise discon-
nected joints with equal importance. On the other hand, hu-
man action consists of a series of important stages, indicat-
ing that there should be uneven contribution from different
frames to improve the efficiency. Traditional temporal con-
volution methods only utilize fixed kernel sizes (Yan, Xiong,
and Lin 2018), which cannot take full advantage of local
temporal structure.

We propose a novel deep architecture for skeletal hu-
man action recognition by better modelling the spatial and
temporal features of human actions. The basic structure
is a spatial-temporal module (STM) which contains motif-
based GCNs with variable temporal dense block (VTDB),
as shown in Fig. 1. The motif-based graph convolution can
model the dependency of physically connected and discon-
nected joints simultaneously, thus resulting in a more ef-
fective extraction of high-order spatial information. For the
temporal modeling, VTDB is used to encode short-, mid-
and long-range local information. In addition, we employ
the recent non-local neural network module (Wang et al.
2018) to compute a representative sequence. This non-local
block in our network is able to capture whole-range depen-
dencies in an attention mechanism to enhance the ability for
extracting global temporal features.

The major contributions of our deep learning architecture
for human action recognition lie in the following aspects:
1) We propose motif-based GCNs for modelling the high-
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Figure 1: The architecture of the proposed spatial-temporal module (STM). It contains a motif-based graph convolution sub-
module for modeling spatial information, where a weighted adjacency matrix (WAM) is used for modeling action-specific
spatial structure. Variable temporal dense block (VTDB) is used to encode temporal features from different ranges (T1, T2 and
T3). TransLayer represents the transition layer in VTDB. A residual connection is applied on each STM. The non-local block is
used only in the last stage of our network to reduce computation, so it is shown in a dotted line block. ⊕ denotes element-wise
sum, and ⊗ denotes matrix multiplication.

order relationship of all the joints in human skeleton for spa-
tial context. 2) We propose VTDB to capture local temporal
structure over different ranges. 3) We propose to incorporate
a non-local enhanced block into our network for construct-
ing global dependencies in a temporal context.

We evaluate our model on two skeleton-based action
recognition datasets, and the proposed model achieves im-
provements over previous state-of-the-art methods.

2 Related Work
Skeleton-based Action Recognition. With reliable skele-
ton data extracted by robust pose estimation algorithms from
depth sensors (Shotton et al. 2011) or a single RGB cam-
era (Cao et al. 2017; Xiu et al. 2018), skeleton-based ac-
tion recognition draws more and more attention from re-
searchers. Deep learning has been widely used in model-
ing the spatial and temporal patterns of skeleton sequences
in this field. Many methods use RNN due to its advan-
tage for learning long-term sequence data (Song et al. 2017;
Zhang et al. 2017). Spatio-temporal graph which models
the relationship of human body components (spine, arm
and leg) has also been introduced into RNNs (Jain et al.
2016), but it should be more effective to model the hu-
man parts in a finer way with every joint into the graph.
CNN has shown its superiority to RNN owing to the par-
allelization over every element in a sequence and simpler
training process. Skeleton sequences are manually trans-
formed into images (Liu, Liu, and Chen 2017) to feed into
CNNs (Li et al. 2017), which obtain promising performance
in action recognition. Nevertheless, GCN approaches have
shown more promising results (Yan, Xiong, and Lin 2018;
Tang et al. 2018), because the images used by CNNs cannot
fully describe the topology structure of skeletons. Conven-
tional GCNs for human skeleton consider only physically
connection relationship between joints. The extrinsic depen-
dency, referring to physically disconnected joints, which is
presented with equal importance has been adopted (Tang et

al. 2018). However, we take the distance between pair-wise
disconnected joints into consideration to define their rela-
tionship, because close disconnected joints present signifi-
cant importance for recognizing actions.

Graph Convolution. Generalizing convolutions to gen-
eral graph structure is achieving an increasing interest. The
principles of constructing GCNs on graphs are generally
categorized as spatial and spectral approaches. Spatial ap-
proaches require data preprocessing to define convolution
directly on the graph nodes and their neighbors (Duvenaud
et al. 2015; Atwood and Towsley 2016; Hamilton, Ying,
and Leskovec 2017). Spectral approaches perform graph
convolution in frequency domain (Henaff, Bruna, and Le-
Cun 2015; Defferrard, Bresson, and Vandergheynst 2016;
Kipf and Welling 2016). The Laplacian eigenbasis that
transforms a graph from spatial to spectral domain should
be computed and is unique for each graph structure, result-
ing in potentially large computation cost, non-spatially lo-
calized filters and restriction to homogeneous input. An ap-
proximation of spectral filtering is proposed by means of a
Chebyshev expansion of graph Laplacian, removing intense
computation and yielding spatially localized filters (Deffer-
rard, Bresson, and Vandergheynst 2016). The idea is further
simplified by limiting the filters to operate on 1-neighbor
around each node (Kipf and Welling 2016). To model a high-
order spatial locality which is not just limited to immedi-
ate neighbors, motif-based graph convolution has been pro-
posed (Sankar, Zhang, and Chen-Chuan Chang 2017). Con-
sidering high-order information in the structure of human
skeleton, our network is constructed by introducing the mo-
tif notation (Sankar, Zhang, and Chen-Chuan Chang 2017)
to model each joint in a skeleton with features extracted from
semantically relevant joints, such as parent, child and dis-
connected joints.

Temporal Structure. For action video classification with
RGB clips as input, 3D convolution (Yue-Hei Ng et al. 2015;
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Figure 2: Spatial graph of a skeleton (on the left) and motif-
based graph convolution block (on the right). In the graph,
solid dots denote the body joints, while edges reflect the re-
lationship between physically connected and disconnected
joints with solid and dotted lines respectively. Different
weights of disconnected joints are shown intuitively with the
thickness of dotted lines. Arrows show the direction from
parent nodes to child nodes. For simplicity, we only show
disconnected relationship of the neck joint with other joints.
⊕ denotes element-wise sum.

Tran et al. 2015; Carreira and Zisserman 2017) is the most
intuitive. Nevertheless, separating a 3D convolution into
spatial and temporal components yields improvements in
performance (Tran et al. 2018). This idea can also be intro-
duced into 2D convolution for skeleton sequence as input.
Although most works extract features by only considering
fixed temporal kernel depths, temporal transition layer that
integrates feature maps of variable temporal depths has been
proposed for 3D convolution (Diba et al. 2018). Recently, a
non-local neural networks have been constructed for action
recognition. In a non-local operation, the response at a po-
sition is computed as a weighted sum of the features at all
positions in the feature maps. When the set of positions are
time points, the non-local block can be used for our skeleton
sequence. We incorporate variable temporal and non-local
operations into our model to extract more effective local and
global temporal features.

3 Approach
Human skeleton is conventionally considered as an artic-
ulated system composed of joints and rigid bones, imply-
ing a graph structure with the joints as nodes and bones
as edges. GCNs can be used to learn the spatial relation-
ship between joints. Specifically, we construct motif-based
GCNs (Sankar, Zhang, and Chen-Chuan Chang 2017) to
learn the high-order spatial structure, which can not only
model the dependency of physically connected and discon-
nected joints but also the directed structure in the human
skeleton. Then, we concatenate feature maps of spatial con-
text in sequence and feed them into VTDB. The aim of

VTDB is to make use of feature maps extracted at different
local temporal windows over shorter and longer time ranges.
Dense block (Huang et al. 2017) is adopted to concatenate
the feature-maps, because it is parameter-efficient. More-
over, we incorporate a non-local block for global dependen-
cies in the temporal domain to enhance the feature represen-
tation. The input skeleton sequence is a set of frames with
2D or 3D joint coordinates. With joints as nodes, we can
build edges with different weights describing the relation-
ship between nodes to generate a graph representation for
action recognition.

3.1 Motif-based Graph Convolution
For joints and possible relationships between each pair of
joints, we construct a graph G(X,A) with a node set X
and an adjacency matrix A for the edges. In X , there are
N nodes containing 2D or 3D coordinates joints.A encodes
the relationship between each pair of nodes.

Conventional graph-based convolution for human skele-
ton considers only physical connection between joints (Yan,
Xiong, and Lin 2018). Although extrinsic dependency has
been adopted (Tang et al. 2018), it only builds relation-
ships between disconnected joints with a weighted adja-
cency matrix (WAM) that treats pair-wise extrinsic depen-
dency between joints equally. However, the relevance be-
tween disconnected joints is different. For example, relative
positions of left hand and left shoulder should be more rel-
evant than left hand and right foot in most actions. There-
for, a reasonable way to measure the possible degree of
relevance is to take spatial distance between each pair of
nodes into consideration. We use the Euclidean distance
between disconnected joints to define WAM for model-
ing action-specific spatial structure. Furthermore, we adopt
motif-GCNs (Sankar, Zhang, and Chen-Chuan Chang 2017)
to effectively capture high-order structural information.

A motif (or metagraph) has been traditionally defined as
a pattern of connections among different node types (Ben-
son, Gleich, and Leskovec 2016; Fang et al. 2016) . Here,
we build a two-motif structure to model the physical con-
nection and disconnection relationship of joints in a human
skeleton, and its architecture is illustrated in Fig. 2. The first
motif M1 encodes physically connected joints using the im-
mediate neighboring relationship (Kipf and Welling 2016).
We define three semantic roles (KM1

= 3) to the immedi-
ate neighbors of each joint: the joint itself, the joint’s par-
ent node and child node, which inherently lie in a directed
graph. In this way, we get a hierarchical structure of human
body parts in a motion. The second motif M2 is used to en-
code the possible relationship between disconnected joints.
We define one semantic dependency (KM2 = 1) to rep-
resent the underlying relationship. Additionally, we define
WAM for disconnected joints by assigning larger weights
to joints with shorter distance, since they are more impor-
tant for action recognition. In detail, αi,j in WAM for the
extrinsic relationship of node i and node j is defined as
αi,j = max e − e(i, j), where e is a matrix representing
the average euclidean distance between pair-wise nodes in
a sequence. Finally, WAM is normalized to reduce the bias
introduced by highly connected nodes.



For input Xt ∈ RN×D with N nodes and D di-
mension coordinates at frame t, inspired by previous ap-
proaches (Kipf and Welling 2016; Sankar, Zhang, and Chen-
Chuan Chang 2017), we implement the motif-based graph
convolution for each motif M with the following formula:

ZMt = (DM )−1
KM∑
k=1

AMk XtW
M
k (1)

where KM matrices AMk define the motif-adjacency tensor
AM that encodes the unique semantic roles of nodes for all
instances of motif M in a graph G. D is a diagonal degree
matrix with DMii =

∑N
j=1

∑KM

k=1AMkij . WM
k is a tensor of

filter parameters for node type k in motif M , and ZMt is
the output of the motif. If we use only a motif with one
semantic role, our motif-based GCNs reduce to traditional
GCNs (Kipf and Welling 2016).

3.2 Variable Temporal Dense Block
For a video with F frames, we can first build a spatial graph
with joints and edges in each frame, and then add edges
for the same joints between neighboring frames to form a
spatial-temporal graph (Yan, Xiong, and Lin 2018). Instead
of directly applying graph-based convolution on the spatial-
temporal graph, we use separate spatial and temporal sub-
modules because it is easier to learn with spatio-temporal
decomposition methods (Tran et al. 2018). For each graph at
the t-th frame, we first feed it into motif-GCNs implemented
as Eq. 1 and then concatenate the output Zt in time axis to
obtain a 3D tensor, which can be sent into a VTDB (Fig. 1)
for action recognition.

In VTDB, instead of using only one temporal window
size, we use three different time ranges (T1, T2 and T3)
to capture more informative temporal features from shorter
and longer terms. We utilize consecutive convolution layers
which are densely concatenated (Huang et al. 2017), because
dense blocks are parameter-efficient and have dense knowl-
edge propagation. Thus, the feature of a skeleton sequence
can be extracted with stacked STMs as shown in Fig. 3.

Dense Connectivity. In a dense block, the l-th layer is di-
rectly connected to all preceding layers and the output hl of
the composite function Hl is denoted as:

hl = Hl([h0, h1, ..., hl−1]) (2)

where [h0, h1, ..., hl−1] denotes the concatenation of all pre-
ceding feature-maps and Hl(·) is a composite function of
BN-RELU-Conv operations (Huang et al. 2017). Each dense
block in our network has three layers to model different local
temporal ranges, and we use different kernels of size 1×T1,
1×T2 and 1×T3 for the convolution operations in the layers,
respectively.

Growth Rate. If the features extracted by Hl has d chan-
nels, we should get d0 + d× (l − 1) input feature-maps for
the l-th layer, where d0 is the input channels. The hyper-
parameter d is referred to as the “growth rate”. The growth
rate can be relatively small. Specifically, we set the growth
rate of each dense block according to the number of output
channels of each STM.

Transition Layer. The transition layer here is used for
controlling the output channels of VTDB and facilitating
down-sampling when it is necessary. A transition layer con-
sists of a batch normalization layer, a RELU layer, and a
1 × 1 convolutional layer. We use a max pooling layer for
down-sampling.
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Figure 3: The architecture of our proposed motif-based
graph convolution network with variable temporal dense
blocks, which is composed of multiple STMs. The non-local
STM is used before the last two STMs to further expand the
temporal dependency.

3.3 Non-local Block for Temporal Attention
In a full skeleton sequence, every frame has different impor-
tance for modeling the temporal information. We thus use a
non-local block (Wang et al. 2018), which can relate differ-
ent time points of a sequence in order to compute a represen-
tation of the sequence in an attention mechanism. The fea-
tures extracted by motif-GCNs denoted as Zi=1...T , whose
dimension is T × N × C, are fed into the non-local block.
The non-local operation compute the dependencies at a time
point directly by attending at any other point in a sequence
as:

Zi =
1

C(Z)

∑
∀j

f(Zi, Zj)g(Zj) (3)

where Zi, Zj denote the features extracted by spatial con-
volution at time i and time j, and C(Z) is used for normal-



ization while g(·) is the unary function that computes the
representation of Zj . The pair-wise function f defines the
relationship with embedded Gaussian following (Wang et al.
2018) as:

f(Zi, Zj) = eθ(Zi)
Tφ(Zj) (4)

where θ(·) and φ(·) are the feature embedding operations
with θ(Zi) =WθZi and φ(Zj) =WφZj .

The non-local operation computes the response at a time
point by considering the features at all temporal positions,
so it is able to enlarge the receptive field from a local range
to the entire sequence. In this way, we use a non-local block
for temporal attention to get a more effective representation
of the temporal domain before VTDB, as shown in Fig. 1.

4 Experiments
We have conducted experiments on two large-scale datasets
to evaluate our proposed model. Firstly, we perform an ab-
lation study to examine the contributions of each proposed
component in our model to recognition improvements on the
Kinetics-M dataset. Then we compare it with state-of-the-
art action recognition methods on both the Kinetics-M (Kay
et al. 2017; Yan, Xiong, and Lin 2018) and NTU-RGB+D
datasets (Shahroudy et al. 2016). Our proposed method out-
performs the state-of-the-art methods on both datasets.

4.1 Network Architecture
Our network is composed of 10 layers of STM, which mod-
els spatial information with motif-based GCNs and tempo-
ral information with VTDB. Before feeding input skeleton
data into our network, we use a batch normalization layer
to normalize the data. The output channel numbers for STM
layers are illustrated in Fig. 3. In more detail, we use sepa-
rate spatial and temporal sub-modules to learn the skeleton
sequence. To reduce computation, we set a smaller number
of the output channels of motif graph convolution than that
of STM in each layer (one half of it by default). Then, the
feature maps extracted by the spatial sub-module are sent
into the temporal sub-module in which the number of out-
put channels is the same as the setting of STM. A residual
connection is applied to each STM (Fig. 1).

The first motif in our 2-motif GCNs is implemented by
performing three standard 1 × 1 2D convolution operations
and multiplying the resulting tensor with a motif-adjacency
matrix. In particular, we add a mask in the spatial convolu-
tion of each layer to enhance the motif’s performance (Yan,
Xiong, and Lin 2018). The second motif that encodes the de-
pendency between physically disconnected joints has 1 se-
mantic role, and we use another 1× 1 2D convolution. Dif-
ferent from the way to model the relationship of connected
joints, we use a weighted adjacency matrix in the second
motif for action-specific spatial modeling.

In VTDB, we set different kernel sizes (T1 = 7, T2 = 9,
T3 = 11) for the 3 layers of dense blocks. The growth rate
of VTDB at each layer of STM is decided by the number
of output channels. Moreover, we insert a non-local block
which uses a sub-sampling strategy to reduce computation
as suggested by (Wang et al. 2018) before VTDB at the 8-th
STM. Max-pooling is used right after the 4-th and 7-th layers

of STM for spatial sub-sampling. A pyramid pooling (He et
al. 2014) is performed on the resulting feature map, which is
then fed to a SoftMax classifier.

4.2 Dataset and Experiment Settings
Kinetics-M. Deepmind Kinetics (Kay et al. 2017) is a ac-
tion video dataset that contains around 300,000 clips in 400
classes sourced from YouTube, and each clip lasts about 10
seconds. The dataset only provides raw video clips with-
out skeleton data. The 2D coordinates of 18 joints (Fig. 2)
have been estimated on each frame of clips (Yan, Xiong,
and Lin 2018) with the realtime Openpose toolbox (Cao
et al. 2017). For multi-person clips, 2 people are selected
based on the average joint confidence. The dataset has been
released for research purposes. However, it contains many
action classes which require recognizing relationships be-
tween the actors and complicated scenes. The works focus-
ing on skeleton-based action recognition would be inferior
to video-based methods on this dataset, a subset of 30 ac-
tion classes strongly related with body motions can make
the performance gap smaller (Yan, Xiong, and Lin 2018).
We use the subset named as “Kinetics-M” here to evaluate
our model with top-1 and top-5 classification accuracy as
recommended by (Kay et al. 2017). The dataset provides
a training set of 25,000 clips and a validation set of 1,500
clips. The training set is used to train our models, and we
report the accuracies on the validation set.

NTU-RGB+D. The widely used NTU-RGB+D is cur-
rently the largest dataset with annotated 3D joint coordi-
nates for the human action recognition task (Shahroudy et al.
2016). It contains more than 56,000 sequences in 60 action
classes. These clips are captured from 40 volunteers in a lab
environment, where three camera views are recorded simul-
taneously from different perspectives. The provided annota-
tions are given in the camera coordinate system, detected by
the Kinect depth sensors. There are 25 major joints for each
subject in the skeleton sequences and each sequence is guar-
anteed to have at most 2 subjects. The authors of this dataset
recommend two benchmarks: 1) cross-subject (CS) bench-
mark with 40,320 and 16560 clips for training and evalua-
tion, respectively. In this setting the training set comes from
one subset of 20 subjects and the models are validated on se-
quences from the remaining 20 subjects; 2) cross-view (CV)
benchmark with 37,920 clips for training and 18,960 clips
for evaluation. Training samples in this setting come from
the camera views 2 and 3, and the evaluation samples are all
from the camera view 1. We follow this convention settings
and report the recognition accuracy on both recommended
benchmarks to compare with previous state-of-the-art meth-
ods.

Training Details. Our experiments are conducted on the
PyTorch deep learning framework with 2 TITANX GPUs.
The models are learned using stochastic gradient descent
with Nesterov momentum (0.9). Initial learning rate is set
to 0.1, and is divided by 10 at 50% and 90% of the to-
tal number of training epochs. The weight decay is 0.0001.
We also use random moving and selecting data augmenta-
tion methods (Yan, Xiong, and Lin 2018) when training on



Top-1 Top-5
uni-GCNs 76.4% 94.0%
motif-GCNs 82.5% 95.7%
motif-GCNs + VTDB 83.3% 95.9%
motif-GCNs + non-local block 83.2% 95.6%
motif-GCNs + non-local VTDB 84.2% 96.1%

Table 1: Ablation study on the Kinetics-M dataset. The
meaning of each setting is explained in Sec. 4.3.

IC GR Top-1
OC/4 OC/4 82.9%
OC/2 OC/4 83.3%
OC/2 OC/2 83.5%

Table 2: The accuracies of the network with different num-
bers of input channels (IC) and growth-rate (GR) in VTDB.
IC and GR are decided by the number of output chan-
nels (OC) of spatial-temporal module at each layer.

the Kinetics-M dataset with the batch size set to 64 on this
dataset. We set the batch size to 32 according to the available
GPU memory for the NTU-RGB+D dataset training without
data augmentation.

4.3 Ablation Study
To analyze the necessity of each of the proposed compo-
nents, we perform a series of detailed experiments on the
Kinetics-M dataset.

Motif-based Graph Convolution. We use uni-labeling
partition strategies in GCNs (Yan, Xiong, and Lin 2018)
as the baseline, named as uni-GCNs here, because it ap-
proximates the propagation rule of traditional GCNs (Kipf
and Welling 2016), which can be seen as using only 1 mo-
tif with 1 semantic role. We compare the performance of
uni-GCNs and our motif-GCNs for modeling spatial infor-
mation in skeleton structure. Temporal convolution is im-
plemented with traditional 1× 1 2D convolution. Seen from
Table 1, motif-GCNs outperform uni-GCNs in modeling hu-
man skeleton structure, which verifies that motif-GCNs im-
prove the performance of conventional GCNs through its un-
derlying high-order structures.

Variable Temporal Dense Block. We evaluate the neces-
sity of another important component VTDB in our network.
As shown in Table 1, the model with VTDB shows superior-
ity over temporal convolution only with the normal range,
which justifies the power of extracting temporal informa-
tion from the short-, mid- and long-range terms. In addi-
tion, we have done a series of tests on the growth-rate of
dense blocks to achieve better configuration for the new ar-
chitecture, as shown in Table 2. We set the number of in-
put channels (IC) and growth-rate (GR) with respect to the
output channels (OC) of the setting of STM at each layer.
It is obvious that VTDB would perform better as IC and
GR increase. IC is in coincidence with the number of out-
put channels of the spatial module. When IC increases, the
features extracted by the spatial module would be more in-

Top-1 Top-5
STGCN (Yan, Xiong, and Lin 2018) 79.7% 94.2%
motif-GCNs+non-local VTDB 84.2% 96.1%

Table 3: Skeleton-based action recognition performance on
kinetics-M dataset in terms of top-1 and top-5 accuracies.

CS CV
PA-LSTM (Shahroudy et al. 2016) 62.9% 70.3%
ST-LSTM (Liu et al. 2016) 69.2% 77.7%
2S RNN (Wang and Wang 2017) 71.3% 79.5%
TConv (Kim and Reiter 2017) 74.3% 83.1%
Clips+CNN+MTLN (Ke et al. 2017) 79.6% 84.8%
VI (Liu, Liu, and Chen 2017) 80.0% 87.2%
STGCN (Yan, Xiong, and Lin 2018) 81.5% 88.3%
LSTM-CNN (Li et al. 2017) 82.9% 90.1%
DPRL (Tang et al. 2018) 83.5% 89.8%
motif-GCNs+non-local VTDB 84.2% 90.2%

Table 4: Skeleton-based action recognition performance on
NTU-RGB+D dataset. The accuracies are reported on both
the cross-subject (CS) and cross-view (CV) benchmarks.

formative. The contribution of GR is primarily due to growth
in model capacity of dense block (Huang et al. 2017). We set
IC and GR (IC = OC/2, GR=OC/4 by default) considering
both computation complexity and accuracy.

Non-local Block. Table 1 compares strategies to add a
non-local block to our network. The block is added right be-
fore the temporal convolution in an STM. We use only one
non-local block in our network before traditional temporal
convolution or VTDB for ablation study. The improvements
indicate that dependencies of the whole sequence is impor-
tant for temporal modeling.

4.4 Comparison with State of the Arts
We demonstrate the effectiveness of our model on two large-
scale datasets and compare with state-of-the-art methods.

On the kinetics-M dataset, we compare with ST-GCN
model (Yan, Xiong, and Lin 2018) in terms of top-1 and top-
5 accuracies as mentioned before for skeleton-based action
recognition. Our model outperforms the ST-GCN method on
this dataset.

We compare our final model with the state-of-the-art
methods on the NTU-RGB+D dataset. As shown in Table 4,
we report both CS and CV top-1 classification accuracies
following the standard practice in literature (Shahroudy et
al. 2016). Our model outperforms the state-of-the-art ap-
proaches on this dataset without data augmentation as used
in previous literatures (Ke et al. 2017; Kim and Reiter 2017;
Yan, Xiong, and Lin 2018).

4.5 Discussions
In the ablation study, motif-based GCNs most contribute
to the improvements of our model. VTDB is prone to in-
crease the accuracy consistently with growth in both IC and



Belly Dancing

Throwing Discus

Figure 4: The response magnitude of all the joints (red dots) in a motion sequence in the last layer of uni-GCNs (the first
row) and our model (the second row). Uni-GCNs gives the wrong label “Belly Dancing”, while our model recognize the motion
“Throwing Discus” correctly. The video sequence is selected from a clip of the Kinetics-M dataset with an interval of 20 frames.

GR. Particularly, there is no sign of performance degraga-
tion or overfitting. By tuning the hyper-parameters, further
gains in accuracy may be obtained. We show the superiority
of our model compared to uni-GCNs intuitively in Fig. 4.
Uni-GCNs mislead “throwing discus” as “belly dancing”,
because the networks tend to consider only close neighbors.
Our model gets more reasonable response at joints and gives
the right label to the action by adopting the possible de-
pendencies of physically disconnected joints and the hier-
archical structure in the skeleton. The Kinetics-M dataset
is captured in unconstrained environments, achieving im-
provements on this dataset verifies that out model is able
to extract more effective features from noisy data. Further-
more, we also get a competitive performance on the NTU-
RGB+D dataset whose data captured in constrained lab en-
vironments are more stable. Recently, there is a trend to
use multi-streams of data to raise the performance of action
recognition. Although we focus on skeleton-based data in
this work, our model can also provide complementary infor-
mation to RGB and optical flow models to further raise the
performance.

5 Conclusion
In this paper, we have presented a new motif-based graph
convolution network with variable temporal dense block ar-
chitecture for skeleton-based action recognition. The net-
work constructs a set of spatial-temporal modules to model
the skeleton sequences. Motif-GCNs effectively fuse in-
formation from different semantic roles of physically con-
nected and disconnected joints to learn high-order features.
Moreover, we proposed VTDB to model local temporal in-
formation from different ranges. A non-local block is also

combined with VTDB to further enhance the ability in mod-
eling the global dependencies. Our proposed model achieves
improvements over the state-of-the-art methods on two chal-
lenging large-scale datasets.
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